

INNOVATIVE WELDING CONSUMABLES

Fondé en 1870, le fabricant français de consommables innovants de soudage et de brasage FSH WELDING GROUP est aujourd'hui l'un des principaux acteurs sur le marché mondial.

Notre groupe est présent sur tous les continents à travers nos filiales et nos partenaires, et nous proposons la plus large gamme de produits sur le marché du soudage et du brasage. La qualité de notre offre et de nos services ainsi que la pertinence de notre pôle Recherche & Développement nous ont placés au fil des années, comme LA référence auprès des plus grands donneurs d'ordre de l'industrie.

Nous nous illustrons tout particulièrement sur des marchés spécifiques, très techniques et dans des secteurs industriels à forte valeur ajoutée tels que l'aéronautique, le nucléaire, la chimie, la pétrochimie, la Maintenance & Réparation, le transport terrestre ou le chauffage et la climatisation.

La qualité est une exigence et la garantie de la confiance durable de nos clients. Elle est dans nos gènes. Nos produits, diffusés sous les marques SELECTARC WELDING et SELECTARC BRAZING, répondent à des prérequis exigeants et intangibles. Nous veillons à réaffirmer sans cesse cette culture de la qualité tout en étant réactif, flexible et inscrit dans un process d'amélioration continue.

SOMMAIRE

CLAS	SIFICATION & NORMES	
0		
1/ N	OTRE GAMME PRODUITS	
	ACIERS NON ALLIÉS	12
	ACIERS FAIBLEMENT ALLIÉS	13)
	ACIERS INOXYDABLES	16
	ALLIAGES DE NICKEL	22
	ALLIAGES D'ALUMINIUM	25
	ALLIAGES DE MAGNÉSIUM	
	ALLIAGES CUIVREUX	
	ALLIAGES DE TITANE	
	ALLIAGES DE COBALT	
	RECHARGEMENT - MAINTENANCE ET RÉPARATION	
	GAMMES SPÉCIALES : FILS À FREINER, TIG ORBITAL, MICRO-LASER	
2/ D	IVERS	
	TRAVAIL À FAÇON	41)
	CONDITIONNEMENTS / PACKAGING	
	SERVICES & QUALITÉ	43)
	DIAGRAMME DE SCHAEFFLER	44
	CARBONE ÉQUIVALENT ET TEMPÉRATURE DE PRÉCHAUFFAGE	44)
	TABLEAUX DE CONVERSION DES ALLIAGES ET DES DIAMÈTRES	45)
	CORRESPONDANCE DES DURETÉS	46

LES SECTEURS D'ACTIVITÉS

OÙ NOUS SOMMES PRÉSENTS :

AÉRONAUTIQUE

AGROALIMENTAIRE

ÉNERGIE : CENTRALES ÉLECTRIQUES, THERMIQUES ET NUCLÉAIRES

CONSTRUCTION NAVALE

AUTOMOBILE

INDUSTRIE CHIMIQUE ET PÉTROCHIMIQUE

MÉDICAL

NOUVELLES DÉNOMINATIONS

FILS SELECTARC

pour une offre produits homogène à la gamme d'électrodes!

	ANCIEN NOM FPS	ANCIEN NOM FSH		NOUVELLE DÉNOMINATION
		GALVARC		SELECTARC F55
ERS LLIÉS	7053	7053	-	SELECTARC F56
NON A	70S6/SG2	70S6/SG2	-	SELECTARC F57
	-	-	-	SELECTARC F57N
	80SD2	80SD2		SELECTARC F60
	70SA 1	70SA 1	-	SELECTARC F61
	Cr1Mo	80SB2	-	SELECTARC F63
	Cr2Mo	90SB3	-	SELECTARC F68
	Cr5Mo	CrMo5	-	SELECTARC F69
ALLIÉS		80SB8	-	SELECTARC F609
ENT AL	90SB9	90SB9	-	SELECTARC F691
BLEMI	CORTEN	CORTEN	-	SELECTARC F75
ACIERS FAIBLEM	100 S1	100 S1	-	SELECTARC F77
ACIE		80SNi1	-	SELECTARC F81
	-	80SNi2	-	SELECTARC F82
	A 60	A 60	-	SELECTARC A 60
	B.M.S	нв36	-	SELECTARC BMS
	scvs	15CDV6	-	SELECTARC SCVS
	F66S	25CD4	-	SELECTARC F66S
	FINOX 19.9.7	307 Si		SELECTARC 18/8MN
	FINOX 308L	308L		SELECTARC 20/10
	FINOX 308L	308LSi	•	SELECTARC 20/10S
			•	SELECTARC INOX 8
	-	-	•	SELECTARC INOX 8S
ABLES	-	308H		SELECTARC 20/10C
XYDA	Z10CNT18-10	321	•	SELECTARC 20/10T
RS INC	FINOX 347	347		SELECTARC 20/10NB
ACIERS II	FINOX 347SI	347 Si	•	SELECTARC 20/10NBS
	FINOX 316L	316L		SELECTARC 20/10M
	FINOX 316LSI	316LSi	•	SELECTARC 20/10MS
		-	•	SELECTARC INOX 16
		-	•	SELECTARC INOX 16S
		316MnN		SELECTARC 20/10MN

	ANCIEN NOM FPS	ANCIEN NOM FSH	NOUVELLE DÉNOMINATION
	FINOX 318	318	SELECTARC 20/10MNB
	FINOX 318SI	318 Si	SELECTARC 20/10MNBS
	FINOX 309L	309L	SELECTARC 24/12
	FINOX 309LSI	309LSi	SELECTARC 24/12S
	FINOX 309LM	309LMo	SELECTARC 24/12M
	FINOX 310	310	SELECTARC 25/20
	FINOX 312	312	SELECTARC 29/9
	FINOX 317L	317L	SELECTARC 18/15
	URANUS B6	385	SELECTARC 20/25CU
SILES		383	SELECTARC 27/31CU
KYDAB	FINOX 410	410	SELECTARC M13/0
ACIERS INOXYDABLES	FINOX 14R	420	SELECTARC M13/0C
ACIER	FINOX 410 NiMo	410NiMo	SELECTARC M13/4
	FINOX 430	430	SELECTARC F17/0
	FINOX 45	2209	SELECTARC D22/09
	FINOX 52	2509	SELECTARC D25/09
	253MA	253MA	SELECTARC 21/10MA
	16.8.2	16-8-2	SELECTARC 16/8M
	FINOX 17-4 CU	17-4 Cu	SELECTARC 17/4CU
	APX 4S	17-4 Mo	SELECTARC 17/4MO
	Z12CNDV12	Z12CNDV12	SELECTARC 11/3M
	FINOX N155	N155	SELECTARC 22/21CO
	FINI 22	Ni22	SELECTARC NI22
	FINI 059	Ni059	SELECTARC NI59
	FINICU 60	Ni60	SELECTARC NI60
	FINI 61	NiTi4	SELECTARC NI61
AICKE!	FINI65	Ni65	SELECTARC NI65
S DE P	FINOX 82	Ni82	SELECTARC NI82
ALLIAGES DE NICKEI	FINI90	Ni90	SELECTARC NI90
A	FINI 20 D	Ni263	SELECTARC NI263
	FINI 276	Ni276	SELECTARC NI276
	FINOX 601	Ni601	SELECTARC NI601
	FINOX 617	Ni617	SELECTARC NI617

Légende : ■ Aciers non alliés, ■ Aciers faiblement alliés, ■ Aciers inoxydables, ■ Alliages de nickel, ■ Alliages d'aluminium, ■ Alliages de magnésium, ■ Alliages cuivreux, ■ Alliages de titane, ■ Alliages de cobalt, ■ Rechargement - Maintenance et réparation, ■ Divers.

NOUVELLES DÉNOMINATIONS

FILS SELECTARC

pour une offre produits homogène à la gamme d'électrodes!

	ANCIEN NOM FPS	ANCIEN NOM FSH	NOUVELLE DÉNOMINATION
KEL	FINOX 625	Ni625	SELECTARC NI625
	FINOX 718	Ni718	SELECTARC NI718
NICKE	FINICRO 80.20	NiCr80.20	SELECTARC NICR80
ES DE	FINI 004	NiW	SELECTARC NIW
ALLIAGES DE NICKEL	FINI 002	NiX	SELECTARC NIX
<	FENI36	FeNi36	SELECTARC FENI36
	FENI50	FeNi50	SELECTARC FENI50
	FIAL 2	Al99.5	■ SELECTARC AL99.7
	FIAL 4	AIMg3	■ SELECTARC ALG3
	FIAL 6	AIMg5	■ SELECTARC ALG5
NIC	FIAL 7	AIMg4.5Mn	■ SELECTARC ALG4M
ALUM	FIAL 8	AIMg5Mn	■ SELECTARC ALG5M
ALLIAGES D'ALUMINIC	FIAL 12	AIMg4Z2	■ SELECTARC ALG4Z2
ALLIA(FIAL 10	AlCu6	■ SELECTARC ALC6
	FIAL 15	AISi5	■ SELECTARC ALS5
	FIAL 14	AISi7	■ SELECTARC ALS7
	FIAL 17	AISi12	■ SELECTARC ALS12
GES q	AZ92A	-	SELECTARC AZ92A
ALLIA	EZ33A	-	■ SELECTARC EZ33A
	FICU 1	Cu110	SELECTARC CUS
	FICU 10	Cu114	SELECTARC CUS6
	FICU 11	CuSn8	SELECTARC CUS8
	FICU 12	CuSn13	SELECTARC CUS13
	FICU 2	CuSi3	SELECTARC CUSIL
VREUX	FICU 3	CuAg	SELECTARC CUAG
ES CUI	FICU 5	CuAl8	SELECTARC CUAS
ALLIAGES CUIV	FICU 6D	CuAl9Mn	SELECTARC CUASNI
⋖	FICU 4	CuAl9	SELECTARC CUA9
	FICU 8	CuAl9Ni	SELECTARC CUA9NI
	FICU 7	Cu118	SELECTARC CUMN13
	FICUNI90.10	CuNi90.10	SELECTARC CUNI10
	FICUNI 67	CuNi30	SELECTARC CUNI30

Légende :	
-----------	--

■ Aciers non alliés,
■ Aciers faiblement alliés,
■ Aciers inoxydables,
■ Alliages de nickel,
■ Alliages d'aluminium,
■ Alliages de magnésium,
■ Alliages cuivreux,
■ Alliages de titane,
■ Alliages de cobalt,
■ Rechargement - Maintenance et réparation,
■ Divers.

	ANCIEN NOM FPS	ANCIEN NOM FSH	NOUVELLE DÉNOMINATION
NE NE	T40	-	SELECTARC T40
ALLIAGES DE TITAN	TPdO,2		■ SELECTARC TPD0.2
(GES D	TA6V4		■ SELECTARC TA6V4
ALL!	TA6V4 ELI	-	SELECTARC TA6V4 ELI
	FICO 1	Co1	SELECTARC CO1
	FICO 6	Co6	SELECTARC CO6
	FICO 12	Co12	SELECTARC CO12
	FICO 21	Co21	SELECTARC CO21
BALT	-	Co25	SELECTARC CO25
GES DE COBAI	FICO 25	-	SELECTARC FICO25
AGES	FICO 31	-	SELECTARC FICO31
ALLI	FICO 188		SELECTARC FICO188
	FICO 414	-	SELECTARC FICO414
	FICO 694	-	SELECTARC FICO694
	FICO 918	-	SELECTARC FICO918
	FICO T800	-	SELECTARC FICOT800
	819 BS	819 BS	■ SELECTARC 819 BS
	BMS	HB36	SELECTARC BMS
	MV5S	нв60нт	SELECTARC MV5S
NOI	MARVAL 18S	HBMAR50	SELECTARC MARVAL 18S
RÉPARATIO	SMV3S	НВ58НТ	■ SELECTARC SMV3S
	scvs	15CDV6	■ SELECTARC SCVS
ANCE	-	-	■ SELECTARC HB48HT
AINTENANCE ET	-	-	■ SELECTARC HB56HT
	R250B	R250B	SELECTARC HB25
EMEN	R350B	R350B	SELECTARC HB35
RECHARGEMENT - M	R500B	R500B	SELECTARC HB50
æ	R600B	600 HB	SELECTARC HB60
	F400C	HBCrMo17-1	SELECTARC HBF17
	F820D	HBC62	SELECTARC HBC62
	FICU BE2	CuBe2	SELECTARC HCUBE
50	Z 2 CN 18.10	-	SELECTARC Z 2 CN 18-10
DIVERS	Z 6 CNT 18.10	-	SELECTARC Z 6 CNT 18-10
	NC 15 Fe	-	■ SELECTARC NC 15 FE

CLASSIFICATION & NORMES

SOUDAGE HÉTÉROGÈNES - MAINTENANCE ET RÉPARATION

MÉTAUX DE BASE	ACIER	Faible- Ment Allié	ACIER À OUTIL	GALVA ACIER	ACIER INOX	acier Résistant à chaud	BASE Ni	CUIVRE DÉSOXY- DULÉ	Cu Ni	Cu Al	BRONZE	LAITON	TÔI REC GÉ
TÔLES			^NI82						<ni82< td=""><td></td><td></td><td></td><td></td></ni82<>				
RECHARGÉES	18/8MN	18/8MN	NI82	18/8MN	NI82	NI82	NI82	CUS6	NI60	CUMN13	CUS6	CUS6	18/
LAITON		<cus6< td=""><td>^NI60</td><td></td><td><cus6< td=""><td><cus6< td=""><td><cus6< td=""><td></td><td><cus6< td=""><td></td><td></td><td></td><td></td></cus6<></td></cus6<></td></cus6<></td></cus6<></td></cus6<>	^NI60		<cus6< td=""><td><cus6< td=""><td><cus6< td=""><td></td><td><cus6< td=""><td></td><td></td><td></td><td></td></cus6<></td></cus6<></td></cus6<></td></cus6<>	<cus6< td=""><td><cus6< td=""><td></td><td><cus6< td=""><td></td><td></td><td></td><td></td></cus6<></td></cus6<></td></cus6<>	<cus6< td=""><td></td><td><cus6< td=""><td></td><td></td><td></td><td></td></cus6<></td></cus6<>		<cus6< td=""><td></td><td></td><td></td><td></td></cus6<>				
LAHON	CUMN13	CUMN13	CUA9	CUS6	NI60	NI60	NI60	CUS6	CUNI30	CUA8	CUS6	CUS6	
BRONZE					<cus6< td=""><td><cus6< td=""><td></td><td></td><td><ni60< td=""><td></td><td></td><td></td><td></td></ni60<></td></cus6<></td></cus6<>	<cus6< td=""><td></td><td></td><td><ni60< td=""><td></td><td></td><td></td><td></td></ni60<></td></cus6<>			<ni60< td=""><td></td><td></td><td></td><td></td></ni60<>				
BHONZE	CUS6	CUS6	CUS6	CUS6	NI82	NI82	NI60	CUS6	CUNI30	CUA8	CUS6		
Cu Al					^NI60	^NI60							
- 50711	CUMN13	CUMN13	CUMN13	CUA8	CUMN13	CUMN13	CUMN13	CUMN13	CUMN13	CUA8			
Cu Ni													
Ju III	NI60	NI60	NI60	NI60	NI60	NI60	NI60	NI60	CUNI30				
CUIVRE					<ni61< td=""><td><ni61< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ni61<></td></ni61<>	<ni61< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ni61<>							
DÉSOXYDULÉ	CUS6	CUS6	CUS6	CUS6	NI82	NI82	NI60	CUS					
BASE Ni			^NI82	^NI82									
DAGE NI	NI82	NI82	NI82	NI82	NI82	NI82	NI82						
ACIER RÉSISTANT			^NI82									AIDE	
À CHAUD	25/20	24/12	NI82	24/12S	25/20	25/20					All	OHO	
ACIER			^NI82								AU	CHO	X
INOX	24/12	24/12	NI82	24/12S	20/10M								
GALVA			^NI82										
ACIER	F55	18/8MN	NI82	CUA8									
ACIER À OUTIL	NUCC	NUCC	NUCC				GENDE						
	NI82	NI82	NI82		l			eurrage su		ae base ir	naique par	ie sens de	e ia fi
ACIER FAIBLEMENT	10/08/81	10/08/81				11	B/8MN N	létal d'app	ort				
ALLIÉ	18/8MN	18/8MN				EXI	EMPLE						

^Ni60

CUMN13

F56

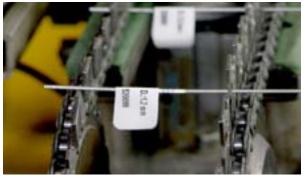
Assemblage Inox et CuAI, beurrage sur base inox avec un fil

en NI60, CUMN13 puis assemblage en fil CUMN13

CLASSIFICATION & NORMES

ACIERS NON ALLIÉS

				TIG / Classification		MIG / Classification			
Dénomination	TIG	MIG	AWS A5.18	ISO 636-A	MATÉRIEL Nº	AWS A5.18 ISO 14341-		MATÉRIEL Nº	
■ SELECTARC F55		Х	-	-	-	ER70S-2	G2Ti	-	P 12
■ SELECTARC F56	Х		ER70S-3	W2Si	1.5112	-	-	-	P 12
■ SELECTARC F57	Х	х	ER70S-6	W3Si1	~1.5125	ER70S-6	G3Si1	~1.5125	P 12
■ SELECTARC F57N	Х		ER70S-G	W0	-	-	-	-	P 12


ACIERS FAIBLEMENT ALLIÉS

TIG / Classification								MIG / CI	assification		MATÉRIEL	
Dénomination	TIG	MIG	AWS A5.28	ISO 636	ISO 21952	ISO 16834-A	AWS A5.28	ISO 14341-A	ISO 16834-A	ISO 21952	N°	
■ SELECTARC F60	Х	х	ER80S-D2	W4M31	-	-	ER80S-D2	G4Mo	-	-	-	P 13
■ SELECTARC F61	Х	х	ER70S-A1	W2Mo	-	-	ER70S-A1	G2Mo	-	-	1.5124	P 13
■ SELECTARC F63	х	х	ER80S-B2	-	W 1CM	-	ER80S-B2	-	-	G 1CM	1.7338	P 13
■ SELECTARC F68	х	х	ER90S-B3	-	W 2C1M	-	ER90S-B3	-	-	G 2C1M	1.7383	P 13
■ SELECTARC F69	х	х	ER80S-B6	-	-	-	ER80S-B6	-	-	-	-	P 13
■ SELECTARC F609	Х	х	ER80S-B8	-	W CrMo9	-	ER80S-B8	-	-	G CrMo9	-	P 14
■ SELECTARC F691	х	х	ER90S-B9	-	W CrMo91	-	ER90S-B9	-	-	G CrMo91	-	P 14
■ SELECTARC F75	Х	х	ER80S-G	-	-	W Mn3Ni1Cu	ER80S-G	-	G Mn3Ni1Cu	-	-	P 14
■ SELECTARC F77	х	х	ER100S-1	-	-	W Z Mn3Ni1.5Mo	ER100S-1	-	G Z Mn3Ni1.5Mo	-	-	P 14
■ SELECTARC F81	х	х	ER80S-Ni1	W3Ni1	-	-	ER80S-Ni1	G3Ni1	-	-	-	P 14
■ SELECTARC F82	х	х	ER80S-Ni2	W2Ni2	-	-	ER80S-Ni2	G2Ni2	-	-	-	P 14

ACIERS FAIBLEMENT ALLIÉS : GAMME AÉRONAUTIQUE

* Rechargement Aubert & I	Duva	l		Classification					
Dénomination	TIG	MIG	EN /	'ISO	AIR 9117				
■ SELECTARC A60	Х	Х	-	-	A 60	P 15			
■ SELECTARC BMS*	Х	Х	EN 4332	8CrMnMo12-4-9	8 CD 12	P 15			
■ SELECTARC SCVS*	Х	Х	EN 4334	15CrMnMoV5-4-9-3	15 CDV 6	P 15			
■ SELECTARC F66S*	Х	Х	EN 4331	25CrMnMo4-2-2	25 CD 4	P 15			

ACIERS INOXYDABLES

			Classification						
Dénomination	TIG	MIG	AWS A5.9	EN / ISO 14343	B-A	AMS	AIR 9117	MATÉRIEL Nº	
SELECTARC 18/8MN	Х	х	~ER307	W 18 8 Mn	G 18 8 Mn	-	-	1.4370	P 16
SELECTARC 20/10	Х		ER308L	W 19 9 L	-	-	-	1.4316	P 17
SELECTARC 20/10S	Х	х	ER308LSi	W 19 9 L Si	G 19 9 L Si	-	-	1.4316	P 17
SELECTARC INOX 8	Х		ER308L	W 19 9 L	-	-	-	1.4316	P 17
SELECTARC INOX 8S		х	ER308LSi	-	G 19 9 L Si	-	-	1.4316	P 17
SELECTARC 20/10C	Х	х	ER308H	W 19 9 H	G 19 9 H	-	-	1.4948	P 17
SELECTARC 20/10T	Х	х	~ER321	W Z 19 9 Ti	G Z 19 9 Ti	-	-	1.4541	P 17
SELECTARC 20/10NB	Х		ER347	W 19 9 Nb	-	5680	-	1.4551	P 17
SELECTARC 20/10NBS	х	х	ER347Si	W 19 9 Nb Si	G 19 9 Nb Si	-	-	1.4551	P 18
SELECTARC 20/10M	Х		ER316L	W 19 12 3 L	-	-	-	1.4430	P 18
SELECTARC 20/10MS	х	х	ER316LSi	W 19 12 3 L Si	G 19 12 3 L Si	-	-	1.4430	P 18
SELECTARC INOX 16	х		ER316L	W 19 12 3 L	-	-	-	1.4430	P 18
SELECTARC INOX 16S		х	ER316LSi	-	G 19 12 3 L Si	-	-	1.4430	P 18
SELECTARC 20/10MN	Х	Х	ER316LMn	W 20 16 3 Mn L	G 20 16 3 Mn L	-	-	1.4455	P 18
SELECTARC 20/10MNB	Х		ER318	W 19 12 3 Nb	-	-	-	1.4576	P 18
SELECTARC 20/10MNBS		х	~ER318	-	G 19 12 3 Nb Si	-	-	1.4576	P 19
SELECTARC 24/12	х		ER309L	W 23 12 L	-	-	-	1.4332	P 19
SELECTARC 24/12S	х	х	ER309LSi	W 23 12 L Si	G 23 12 L Si	-	-	1.4332	P 19
SELECTARC 24/12M	Х	Х	~ER309LMo	W 23 12 2 L	G 23 12 2 L	-	-	1.4459	P 19
SELECTARC 25/20	Х	Х	ER310	W 25 20	G 25 20	-	-	~1.4842	P 19
SELECTARC 29/9	Х	Х	ER312	W 29 9	G 29 9	-	-	1.4337	P 19
SELECTARC 18/15	Х	Х	ER317L	W 18 15 3 L	G 18 15 3 L	-	-	1.4438	P 19
SELECTARC 20/25CU	Х	Х	ER385	W 20 25 5 Cu L	G 20 25 5 Cu L	-	-	1.4519	P 20
SELECTARC 27/31CU	Х	Х	ER383	W 27 3 14 Cu L	G 27 3 14 Cu L	-	-	1.4583	P 20
SELECTARC M13/0	Х	Х	ER410	W 13	G 13	5776	-	1.4009	P 20
SELECTARC M13/0C	Х		ER420	-	-	-	-	1.4028	P 20
SELECTARC M13/4	Х	Х	ER410NiMo	W 13 4	G 13 4	-	-	~1.4351	P 20
SELECTARC F17/0	Х	Х	ER430	W 17	G 17	-	-	1.4016	P 20
SELECTARC D22/09	Х	Х	ER2209	W 22 9 3 N L	G 22 9 3 N L	-	-	~1.4462	P 20
SELECTARC D25/09	Х	Х	ER2594	W 25 9 4 N L	G 25 9 4 N L	-	-	-	P 21
SELECTARC D25/09W	Х	Х	ER2594	W 25 9 4 N L	G 25 9 4 N L	-	-	-	P 21
SELECTARC 21/10MA	Х	Х	-	W Z 21 10 N H	G Z 21 10 N H	-	-	~1.4835	P 21
SELECTARC 16/8M	Х	Х	ER16-8-2	W 16 8 2	G 16 8 2	-	-	-	P 21
SELECTARC 17/4CU	Х	Х	ER630	EN 3889 / X5CrNiCu17-4	-	5825	Z5CNV17-04	-	P 21
SELECTARC 17/4MO	Х	х	-	EN 4683 / X4CrNiMo16-5-1	-	-	Z8CND17-04	1.4418	P 21
SELECTARC 11/3M	Х	Х	-	EN 3890 / X11CrNiMoVN12-3	-	-	Z12CNDV12	1.4938	P 21
SELECTARC 22/21CO	Х	Х	-	W Z 22 21 3 CoWNbN	-	5794	Z12CNKDW20	-	P 21

ALLIAGES DE NICKEL

				Classification			
Dénomination	TIG	MIG	AWS A5.14	ISO 18274	AMS	MATÉRIEL N°	
■ SELECTARC NI22	Х	Х	ERNiCrMo-10	S-Ni6022 (NiCr21Mo13Fe4W3)	-	2.4635	P 22
■ SELECTARC NI59	Х	Х	ERNiCrMo-13	S-Ni 6059 (NiCr23Mo16)	-	2.4607	P 22
■ SELECTARC NI60	Х	Х	ERNiCu-7	S-Ni 4060 (NiCu30Mn3Ti)	-	2.4377	P 22
■ SELECTARC NI61	Х	Х	ERNi-1	S-Ni 2061 (NiTi3)	-	2.4155	P 22
■ SELECTARC NI65	Х	Х	ERNiFeCr-1	S-Ni 8065 (NiFe30Cr21Mo3)	-	2.4858	P 22
■ SELECTARC NI82	Х	Х	ERNiCr-3	S-Ni 6082 (NiCr20Mn3Nb)	-	2.4806	P 23
SELECTARC NI90	Х	Х	-	S-Ni 7090 (NiCr20Co18Ti3)	5829	2.4632	P 23
■ SELECTARC NI263	Х	Х	-	S-Ni 7263 (NiCr20Co20Mo6Ti2)	5966	2.4650	P 23
■ SELECTARC NI276	Х	Х	ERNiCrMo-4	S-Ni 6276 (NiMo16Cr15Fe6W4)	-	2.4886	P 23
■ SELECTARC NI601	Х	Х	ERNiCrFe-11	S-Ni 6601 (NiCr23Fe15Al)	-	2.4626	P 23
■ SELECTARC NI617	Х	Х	ERNiCrCoMo-1	S-Ni6617 (NiCr22Co12Mo9)	-	2.4627	P 23
■ SELECTARC NI625	Х	Х	ERNiCrMo-3	S-Ni 6625 (NiCr22Mo9Nb)	5837	2.4831	P 23
■ SELECTARC NI690	Х	Х	ERNiCrFe-7	S-Ni 6052 (NiCr30Fe9)	-	-	P 24
■ SELECTARC NI718	Х	Х	ERNiFeCr-2	S-Ni 7718 (NiFe19Cr19Nb5Mo3)	5832	2.4667	P 24
■ SELECTARC NICR80	Х	Х	~ERNiCr-6	-	5676	2.4639	P 24
■ SELECTARC NIW	Х	Х	ERNiMo-3	S-Ni 1004 (NiMo25Cr5Fe5)	5786	-	P 24
■ SELECTARC NIX	Х	Х	ERNiCrMo-2	S-Ni 6002 (NiCr21Fe18Mo9)	5798	-	P 24
■ SELECTARC FENI36	Х	Х	-	-	-	-	P 24
■ SELECTARC FENI50	X	Х	-	-	-	2.4472	P 24

CLASSIFICATION & NORMES

ALLIAGES D'ALUMINIUM

				Classification								
Dénomination	TIG	MIG	AWS A5.10	ISO 18273	AMS	MATÉRIEL Nº						
■ SELECTARC AL99.7	Х	х	ER1070	S AI 1070 (AI99.7)	-	3.0259	P 25					
■ SELECTARC ALG3	Х	х	ER5754	S AI 5754 (AIMg3)	-	3.3536	P 25					
■ SELECTARC ALG5	Х	х	ER5356	S AI 5356 (AIMg5Cr (A))	-	3.3556	P 26					
■ SELECTARC ALG4M	Х	х	ER5183	S AI 5183 (AIMg4.5Mn0.7)	-	3.3548	P 26					
■ SELECTARC ALG5M	Х	х	ER5556	S AI 5556A (AIMg5Mn)	-	-	P 26					
■ SELECTARC ALG4Z2	Х	х	-	S AI Z (AIMg4Zn2)	-	-	P 26					
■ SELECTARC ALC6	Х	х	ER2319	S AI 2319 (AICu6MnZrTi)	4191	-	P 26					
■ SELECTARC ALS5	Х	х	ER4043	S AI 4043 (AISi5)	4190	3.2245	P 26					
■ SELECTARC ALS7	Х	х	R-357.0	Al 4011 (AlSi7Mg0.5Ti)	4246	-	P 26					
■ SELECTARC ALS12	Х	х	ER4047	S AI 4047 (AISi12)	4185	3.2585	P 26					

ALLIAGES DE MAGNÉSIUM

				Classification									
Dénomination	TIG	MIG	AWS A5.19	AFNOR	AMS	MATÉRIEL N°							
■ SELECTARC AZ92A	х		ERAZ92A	Mg Al 9	4395	-	P 27						
■ SELECTARC EZ33A	х		EREZ33A	Mg Zn 2	4396	-	P 27						

ALLIAGES CUIVREUX

				Classification		
Dénomination	TIG	MIG	AWS A5.7	ISO 24373	MATÉRIEL N°	
SELECTARC CUS	х	х	ERCu	S Cu 1898 (CuSn1)	2.1006	P 28
SELECTARC CUS6	Х	Х	ERCuSn-A	S Cu 5180A (CuSn6P)	2.1022	P 28
■ SELECTARC CUS8	х	х	ERCuSn-C	S Cu 5210 (CuSn8P)	2.1025	P 28
■ SELECTARC CUS13	Х	Х	-	S Cu 5410 (CuSn12P)	2.1056	P 28
SELECTARC CUSIL	х	х	ERCuSi-A	~S Cu 6560 (CuSi3Mn1)	2.1461	P 29
SELECTARC CUAG	Х	Х	~ERCu	S Cu 1897 (CuAg1)	2.1211	P 29
SELECTARC CUA8	х	х	ERCuAl-A1	S Cu 6100 (CuAl7)	2.0921	P 29
SELECTARC CUASNI	Х	Х	-	S Cu 6327 (CuAl8Ni2Fe2Mn2)	2.0922	P 29
SELECTARC CUA9	х	х	ERCuAl-A2	S Cu 6180 (CuAl10Fe)	-	P 30
SELECTARC CUA9NI	х	Х	ERCuNiAl	S Cu 6328 (CuAl9Ni5Fe3Mn2)	-	P 30
■ SELECTARC CUMN13	х	х	ERCuMnNiAl	S Cu 6338 (CuMn13Al8Fe3Ni2)	2.1368	P 30
SELECTARC CUNI10	Х	Х	-	S Cu 7061 (CuNi10)	2.0873	P 30
SELECTARC CUNI30	х	Х	ERCuNi	S Cu 7158 (CuNi30Mn1FeTi)	2.0837	P 30

ALLIAGES DE TITANE

				Classification									
Dénomination	TIG	MIG	AWS A5.16	ISO 24034	AMS	MATÉRIEL N°							
■ SELECTARC T40	Х	Х	ERTi-2	Ti 0120 (Ti99,6)	4951	3.7035	P 31						
■ SELECTARC TPD0.2	х	Х	ERTi-7	Ti 2401 (TiPd0,2A)	-	-	P 31						
■ SELECTARC TA6V4	х	х	ERTi-5	Ti 6402 (TiAl6V4B)	4954	3.7165	P 31						
SELECTARC TA6V4 ELI	X	X	ERTi-23	Ti 6408 (TiAl6V4A)	4956	-	P 31						

ALLIAGES DE COBALT

				Classification									
Dénomination	TIG	MIG	AWS A5.21	EN 14700	DIN 8555	MATÉRIEL N°							
SELECTARC CO1	Х		ERCoCr-C	S Co3	WSG-20-G0-55-CSTZ	-	P 32						
SELECTARC CO6	Х		ERCoCr-A	S Co2	WSG-20-G0-40-CTZ	-	P 32						
SELECTARC CO12	х		ERCoCr-B	S Co2	WSG-20-G0-50-CSTZ	-	P 32						
SELECTARC CO21	Х		ERCoCr-E	S Co1	WSG-20-G0-300-CKTZ	-	P 32						
SELECTARC CO25	X	Х	-	S Co1	WSG-20-GZ-250-CKTZ	-	P 32						

ALLIAGES DE COBALT : GAMME AÉRONAUTIQUE

				Classification								
Dénomination	TIG	MIG	EN	AMS	AFNOR	MATÉRIEL N°						
SELECTARC FICO25	х	х	EN 3887	5796	KC 20 WNX	2.4964	P 33					
SELECTARC FICO31	х	х	EN 4327	5789	KC 26 NW	-	P 33					
SELECTARC FICO188	х	х	EN 3888	5801	KCN 22 W	2.4683	P 33					
SELECTARC FICO414	Х	х	-	-	KC 29 NW	-	P 33					
SELECTARC FICO694	Х	х	EN 4326	-	KC 28 WN	-	P 33					
SELECTARC FICO918	Х	х	-	5814	KC 20 NTa	-	P 33					
SELECTARC FICOT800	х	х	-	-	KD 28 CS	-	P 33					

RECHARGEMENT - MAINTENANCE ET RÉPARATION

* Rechargement Aubert & Duval				Classit	fication		1
Dénomination	TIG	MIG	EN 14700	DIN 8555	AIR 9117 / AFNOR	MATÉRIEL Nº	
■ SELECTARC 819 BS*	х	х	S Fe3	-	-	1.6773	P 34
■ SELECTARC BMS*	Х	Х	-	-	8 CD 12	-	P 34
■ SELECTARC MV5S*	Х	х	S Fe4	MSG 3-GZ-60-P	-	-	P 34
■ SELECTARC MARVAL 18S*	Х	х	S Fe5	-	Z2NKD18	1.6359	P 34
■ SELECTARC SMV3S*	Х	Х	S Fe3	-	-	1.2343	P 34
■ SELECTARC SCVS*	Х	Х	-	-	15 CDV 6	1.7734	P 35
■ SELECTARC HB48HT	Х	Х	S Fe8	-	-	~1.2367	P 35
SELECTARC HB56HT	Х	Х	S Fe6	-	-	~1.2343	P 35
SELECTARC HB25	Х	х	-	WSG 1-GZ-250-P	-	-	P 36
SELECTARC HB35	Х	Х	-	WSG 2-GZ-350-P	-	-	P 36
SELECTARC HB50	Х	х	-	WSG 2-GZ-50	-	-	P 36
SELECTARC HB60	Х	Х	-	WSG 6 GZ-60-S	-	-	P 36
SELECTARC HBF17	Х	Х	-	WSG 6-GZ-50-RZ	-	-	P 36
SELECTARC HBC62	Х	Х	-	WSG 4-GZ-60-S	-	-	P 36
SELECTARC HCUBE	Х	Х	S Z Cu 1	-	AFNOR / CuBe2	-	P 36

DIVERS

		Classification							
Dénomination	NFL 23-320	DMD	EN	MATÉRIEL N°					
■ SELECTARC Z 2 CN 18.10	Z 2 CN 18-10	200-44	-	1.4314.9	P 37				
■ SELECTARC Z 6 CNT 18.10	Z 6 CNT 18-10	-	EN 3628 / EN 2573	1.4544	P 37				
■ SELECTARC NC 15 FE	NC 15 Fe	422-44	-	-	P 37				

ACIERS NON ALLIÉS

LES + DE LA GAMME : gamme large répondant à tous les besoins techniques, répétabilité de la qualité des produits sur toutes les fabrications, produits disponibles en différentes formes, diamètres et volumes de vente, contact direct avec un conseiller technique.

SELECTARC F55

Classif	ication		Analyse chimique type (%)						Caractéristiques mécaniques du métal déposé						
AWS A5.18	ISO 14341-A	С	Si	Mn	Al	Ti	Cu	Zr	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER70S-2	G2Ti	0.06	0.6	1.2	0.1	0.1	0.2	0.08	0.015	0.01	Base	460	560	28	-20°C → 120

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés destinés à être galvanisés ou zingués.
- APPLICATIONS: Construction métallique, fonderie, chantier naval.

■ SELECTARC F56

TIG

Classif	fication		An	alyse c	himiqu	e type (%)			Caractéri	stiques mé	caniques du r	nétal déposé	
AWS A5.18	ISO 636-A	С	Si	Mn	Cu	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)		KV (J)	
ER70S-3	W2Si	0.07	0.65	1.1	0.2	<0.02	<0.02	Base	460	560	26	+20°C → 200	-20°C → 90	-50°C → 50

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers au carbone et faiblement alliés type S235, S355, P235, P310.
- APPLICATIONS: Construction automobile, ferroviaire, navale, travaux publics et tuyauterie. Utilisé pour les passes de pénétration.

☐ SELECTARC F57

	Classific	ation		Analy	se chin	nique typ	oe (%)			Caractér	istiques mé	caniques du métal déposé
25	AWS A5.18	ISO 636-A	С	Si	Mn	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
F	ER70S-6	W3Si1	0.07	0.85	1.45	<0.02	<0.015	Base	460	560	26	$ +20^{\circ}\text{C} \rightarrow 120 \ -20^{\circ}\text{C} \rightarrow 90 \ -40^{\circ}\text{C} \rightarrow 60$
MIG	AWS A5.18	ISO 14341-A	С	Si	Mn	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
	ER70S-6	G3Si1	0.07	0.85	1.45	< 0.025	<0.02	Base	470	550	25	+20°C → 150 -30°C → 80 -

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers au carbone et faiblement alliés type S235, S355, S255N, S420N P235, P310.
- APPLICATIONS: Construction automobile, ferroviaire, navale, travaux publics et tuyauterie.

SELECTARC F57N

TIG

- SELECTAR	C L3/IA																	110
Classification	n					1	Analys	e chir	nique t	ype (%)					Caractéris	stiques méd	aniques du	ı métal déposé
AWS A5.18	ISO 636-A	С	Si	Mn	Cr	Мо	Cu	Ni	٧	Ti	Zr	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER70S-G	W0	0.09	0.61	1.1	0.32	0.02	0.16	0.09	0.001	0.002	0.002	0.012	0.012	Base	530	610	25	-20°C → 160

- PROPRIÉTÉ: Métal d'apport pour soudage TIG sous protection gazeuse des aciers de construction type S355 et similaires (S235-S355; P235-P355; S255N-S420N). Sa teneur en chrome par rapport à un ER70S-3 ou ER70S-6 lui confère une résistance particulière face au phénomène de corrosion/errosion créé par le passage de l'eau.
- APPLICATIONS: En tuyauterie (en particulier nucléaire), pour les passes de pénétration et en passes de fond avant remplissage pour les travaux de soudage de haute qualité, faisant l'objet de contrôles particuliers.

* Après traitement thermique, voir fiche technique pour plus de détails

ACIERS FAIBLEMENT ALLIÉS

LES + DE LA GAMME : gamme large répondant à tous les besoins techniques, répétabilité de la qualité des produits sur toutes les fabrications, produits disponibles en différentes formes, diamètres et volumes de vente, contact direct avec un conseiller technique.

	SELECTARO	: F60										TIG MIG
	Classifi	cation		An	alyse chim	nique type	(%)		Caracté	ristiques mécar	niques du méta	ıl déposé
٤	AWS A5.28	ISO 636-B	С	Si	Mn	Mo	Cu	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
F	ER80S-D2	W4M31	0.08	0.7	1.8	0.5	0.2	Base	500*	620	25	+20°C → 140
_	AWS A5.28	ISO 14341-A	С	Si	Mn	Mo	Cu	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
2	FR80S-D2	G4Mo	0.08	0.7	1.8	0.5	0.2	Base	500*	620	25	+20°C → 140

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés au molybdène (0.5 % Mo) type 15Mo3, 18MnMo4 et pour les aciers HLE lors de la recherche d'allongement. Résistant au fluage jusqu'à 500 °C.
- APPLICATIONS: Industrie chimique et pétrochimique, chaudière et appareil à pression.

	C F61												TIG
Classifi	cation			Analy	se chim	ique typ	e (%)			Caracté	éristiques méca	aniques du mé	tal déposé
AWS A5.28	ISO 636-A	С	Si	Mn	Mo	Cu	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER70S-A1	W2Mo	0.09	0.6	1.2	0.5	0.15	0.01	0.01	Base	520	630	26	+20°C → 200

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers type 16Mo3, P355GH, P460N, S460N devant résister à des températures supérieures à celles faiblement alliés au chrome-molybdène courant. Bonne résistance aux attaques par hydrogène.
- APPLICATIONS: Industrie chimique et centrale thermique : échangeur haute température, tube, chaudière à vapeur.

		F63														TIG MIG
	Classific	ation				Analys	se chim	ique ty	oe (%)				Caractéris	tiques méc	aniques du	métal déposé
TIG	AWS A5.28	ISO 21952-B	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
	ER80S-B2	W 1CM	0.1	0.5	0.6	1.3	0.5	0.2	-	<0.02	<0.01	Base	490*	590	25	+20°C → 200
MIG	AWS A5.28	ISO 21952-B	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
Σ	ER80S-B2	G 1CM	0.09	0.6	0.6	1.3	0.5	0.2	0.03	0.01	0.01	Base	480*	580	25	+20°C → 150

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés à 1.25% de Cr et 0.5% de Mo type 13CrMo4, 25CrMo4, A537. Résistant au fluage jusqu'à 550°C.
- APPLICATIONS: Industrie chimique et pétrochimique, chaudière et appareil à pression.

	SELECTARC	F68														TIG MIG
	Classific	ation				Analy	se chin	nique t	ype (%)			Caractéris	stiques méc	aniques du	métal déposé
TIG	AWS A5.28	ISO 21952-B	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
	ER90S-B3	W 2C1M	0.1	0.5	0.6	2.4	1.0	0.2	-	<0.01	<0.011	Base	550*	630	22	+20°C → 180
MIG	AWS A5.28	ISO 21952-B	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
\leq	ER90S-B3	G 2C1M	0.1	0.6	0.6	2.4	1.0	0.2	0.03	<0.015	<0.015	Base	520*	650	22	+20°C → 150

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés de type semi-réfractaire à 2.5 % de Cr et 1 % de Mo. Résistant au fluage jusqu'à 600 °C. Haute résistance aux H₂S.
- APPLICATIONS: Échangeur haute température, tube, chaudière à vapeur, hydrocraqueur.

	SELECTARC	F69													TIG MIG
	Classifica	ation				Analys	se chim	ique ty	oe (%)				Caractéristique	s mécaniques du	ı métal déposé
<u>5</u>	AWS A5.28	ISO 21952-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)
F	ER80S-B6	W CrMo5Si	0.08	0.4	0.5	5.6	0.55	0.15	0.1	<0.02	<0.02	Base	500*	620	20
5	AWS A5.28	ISO 21952-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)
≥	ER80S-B6	G CrMo5Si	0.08	0.4	0.5	5.6	0.55	0.15	0.1	<0.02	<0.02	Base	500*	620	20

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés au chrome-molybdène type 17CrMo3 5, ASTM A215 Gr C5. Résistant au fluage jusqu'à 600°C. Bonne résistance vis-à-vis des gaz chauds. Ancienne AWS 5.9: ER502.
- APPLICATIONS: Industrie chimique et centrale thermique: échangeur haute température, tube, chaudière à vapeur.

^{*} Après traitement thermique, voir fiche technique pour plus de détails.

ACIERS FAIBLEMENT ALLIÉS

SELECTARC F609 TIG MIG Caractéristiques mécaniques du métal déposé **AWS A5.28** ISO 21952-A С Si Mn Cr Мо Cu Ρ S Fe Rp0.2 (MPa) Rm (MPa) A5 (%) KV (J) 0.4 +20°C → 150 ER80S-B8 W CrMo9 | G CrMo9 | 0.07 0.5 9.0 1.0 0.2 < 0.015 < 0.015 Base 530* 670 24

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés au chrome-molybdène type X12CrMo9-1. Résistant au fluage jusqu'à 600 °C. Bonne résistance vis-à-vis des gaz chauds. Ancienne AWS 5.9 : ER505.
- APPLICATIONS: Échangeur haute température, tube, chaudière à vapeur.

	SELECTAR	C F691															TIG MIG
	Classific	ation					Analy	se chir	nique '	type (°	%)				Caractéristique	es mécaniques d	u métal déposé
ے	AWS A5.28	ISO 21952-A	С	Si	Mn	Cr	Mo	Cu	Ni	V	Nb	N	Р	S	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
	ER90S-B9	W CrMo91	0.09	0.25	0.6	8.8	0.95	0.03	0.65	0.2	0.06	0.05	0.002	0.007	650*	750	18
MIG	AWS A5.28	ISO 21952	С	Si	Mn	Cr	Mo	Cu	Ni	٧	Nb	N	Р	S	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
N	ER90S-B9	G CrMo91	0.09	0.25	0.6	8.8	0.95	0.03	0.65	0.2	0.06	0.05	0.007	0.002	650*	720	18

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés au chrome-molybdène. Résistant au fluage jusqu'à 650 °C. Bonne résistance vis-à-vis des gaz chauds.
- APPLICATIONS: Industrie chimique et centrale thermique : échangeur haute température, tube, chaudière à vapeur.

	ARC F75														TIG MIG
Cla	assification				Ana	alyse cl	himiqu	e type	(%)			Caracté	ristiques mécar	niques du méta	déposé
AWS A5.28	AWS A5.28 ISO 16834-A					Cr	Cu	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER80S-G	W Mn3Ni1Cu	G Mn3Ni1Cu	0.08	0.8	1.4	0.4	0.4	0.8	0.02	0.01	Base	530	620	26	-20°C → 90

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés au cuivre, chrome, nickel type Corten (acier auto-patinable) pour résister aux corrosions atmosphériques.
- APPLICATIONS: Construction métallique, pont, château d'eau, bardage, glissière de sécurité, pylône électrique.

	ARC F77												TIG MIG
	Classification			A	Analyse o	chimique	e type (%	6)		Caractéri	stiques mécai	niques du mét	al déposé
AWS A5.28	AWS A5.28 ISO 16834-A				Mn	Cr	Mo	Ni	Fe	Re (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER100S-1					1.5	0.15	0.35	1.6	Base	730	820	19	-51°C → 70

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers à haute limite d'élasticité (Rm > 800 MPa et Re > 690 Mpa).
- APPLICATIONS: Travaux publics, industrie automobile, fonderie, construction métallique, chaudière...

	SELECTARC	F81												TIG
	Classific	ation			Ana	ılyse cl	himiqu	ie type (9	%)		Ca	ıractéristiqu	es mécaniq	ues du métal déposé
TIG	AWS A5.28	ISO 636-A	С	Si	Mn	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
	ER80S-Ni1	W3Ni1	0.1	0.6	1.2	0.2	1.0	<0.015	<0.015	Base	500	600	26	+20°C → 130 -40°C → 80
MIG	AWS A5.28	ISO 14341-A	С	Si	Mn	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
Σ	ER80S-Ni1	G3Ni1	0.1	0.6	1.2	0.2	1.0	<0.015	<0.015	Base	500	600	25	+20°C → 130 -40°C → 80

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés à haute limite d'élasticité nécessitant une bonne ténacité à basse température.
- APPLICATIONS: Cryogénie jusqu'à -40°C.

	SELECTARC	F82														TIG MIG
	Classific	ation			Anal	yse ch	nimiqu	ie type (%)			Caractéris	tiques m	écaniques du	métal dépos	é
ی	AWS A5.28	ISO 636-A	С	Si	Mn	Мо	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)		KV (J)	
5 <u>1</u> 2	ER80S-Ni2	W2Ni2	0.08	0.6	1.1	0.05	2.5	<0.02	<0.02	Base	530	620	26	+20°C → 130	-40°C→80	-60°C → 50
MIG	AWS A5.28	ISO 14341-A	С	Si	Mn	Мо	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)		KV (J)	
Σ	ER80S-Ni2	G2Ni2	0.08	0.6	1.1	0.05	2.5	<0.02	<0.02	Base	500	600	>24	+20°C → 130	-40°C → 80	-80°C→50

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers faiblement alliés à haute limite d'élasticité nécessitant une bonne ténacité à basse température.
- **APPLICATIONS:** Cryogénie jusqu'à -60°C.
- * Après traitement thermique, voir fiche technique pour plus de détails.

GAMME AÉRONAUTIQUE

SELECTARC A60 TIG MIG Caractéristiques mécaniques du métal déposé **AIR 9117** С Si Mn Si+Al+Ti Cu S Fe Re (MPa) Rm (MPa) A5 (%) A60 < 0.12 0.6 1.0 < 0.9 0.2 < 0.02 < 0.02 Base 380 550 24

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers type XC18S, E26, E36.
- APPLICATIONS: Industrie aéronautique. Existe nu ou cuivré.

	BMS	Appel	ation A	ubert 8	Duval								TIG MIG
Classifi	cation			Ana	alyse c	himiqu	ie type (%	p)		Caracté	ristiques mécar	niques du métal	déposé
EN 4332	AIR 9117	С	Si	Mn	Cr	Mo	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	Dureté (HRC)
8CrMnMo12-4-9	8CD12	0.06	0.7	1.1	2.7	1.0	<0.015	<0.015	Base	440*	570	24	~36

- PROPRIÉTÉ: Métal d'apport type 8CrMo12 utilisé pour le soudage des aciers faiblement alliés type 30CrMoV12, 55NiCrMoV7, 55CrNiMo4. Produit d'une grande pureté, dépôt exempt de porosité.
- APPLICATIONS: Rechargement dur sur ailettes, aciers à outils, moules matières plastiques. Existe nu ou cuivré.

	c scvs	Appe	lation I	Aubert	& Duv	al								TIG MIG
Classifi	cation			An	alyse	chimic	jue typ	e (%)			Cara	ctéristiques m	iécanique	es du métal déposé
EN 4334	AIR 9117	С	Si	Mn	Cr	Мо	٧	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	Dureté (HRC)
15CrMnMoV5-4-9-3	15CDV6	0.14	0.15	1.0	1.4	0.9	0.25	<0.02	<0.02	Base	930*	1080-1280*	10	42 (Brut de soudage)

- PROPRIÉTÉ: Métal d'apport type 15CrMoV6 utilisé pour le soudage homogène et des aciers faiblement alliés de nuances voisines.
- APPLICATIONS: Rechargement dur sur ailettes, aciers à outils. Existe nu ou cuivré.

	C F66S	Appe	lation	Aubert	& Duv	al								TIG
Classifi	cation			Ar	nalyse	chimic	que typ	e (%)			Cara	ctéristiques m	iécanique	es du métal déposé
EN 4331	AIR 9117	С	Si	Mn	Cr	Мо	Ni	Р	S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	Dureté (HRC)
25CrMnMo4-2-2	25CD4	0.23	0.2	0.7	1.2	0.2	0.15	<0.02	<0.02	Base	750*	880-1080*	12	46 (Brut de soudage)

- PROPRIÉTÉ: Métal d'apport type 24CrMo4 utilisé pour le soudage des aciers faiblement alliés type 25CrMo4 et nuances voisines comme 35CrMo4, 20CrMo12...
- APPLICATIONS: Rechargement dur sur ailettes, aciers à outils. Existe nu ou cuivré.

^{*} Après traitement thermique, voir fiche technique pour plus de détails.

ACIERS INOXYDABLES

- LES + DE LA GAMME : des produits répondant aux spécifications clients les plus exigeantes! Une gamme large et exclusive par ses nuances, diamètres et types de conditionnement.
- Diamètres à partir de 4 mm jusqu'à 0,3 mm (gamme micro laser),
- Identification des produits personnalisées (drapeautage, marquage, frappe...),
- Conditionnement : varié selon type et forme du produit.

SOUDAGE DES ACIERS INOXYDABLES

MÉTAUX	ACIER	304L	308H	347	321	316L	318	309L	309LMo	310-310H	410	410 NiMo	.904L-UB6	Duplex 2205 -	Duplex 2505 -
DE BASE		18/8	18/8	18/8Nb	18/8Ti	18/8/3	18/8/3Nb	24/12	24/12Mo	25/20	13Cr	13Cr - 4Ni		U45N	U52N
Duplex 2505-U52N	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09	D25/09
Duplex 2205-U45N	D22/09	D22/09	D22/09	D22/09	D22/09	D22/09	D22/09	D22/09	D22/09	25/20	D22/09	D22/09	20/25CU	D22/09	
385	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU	20/25CU		
410 NiMo	M13/4	24/12	24/12	24/12	24/12	24/12	24/12	24/12	24/12	25/20	M13/4	M13/4			
410	M13/0	24/12	24/12	24/12	24/12	24/12	24/12	24/12	24/12	25/20	M13/0				
310	25/20	25/20	25/20	25/20	25/20	25/20	25/20	25/20	25/20	25/20					
309LMo	24/12M	24/12M	24/12	24/12	24/12	24/12	24/12	24/12	24/12M			-			
309L	24/12	24/12	24/12	24/12	24/12	24/12	24/12	24/12							
318	24/12	20/10M	20/10M	20/10MNB	20/10MNB	20/10MNB	20/10MNB			-					
316L	24/12M	20/10M	20/10M	20/10M	20/10M	20/10M			-				A	DF	
321	24/12	20/10BC	20/10BC	20/10NB	20/10NB			-					AI AU C	HOIX	
347	24/12	20/10NB	20/10NB	20/10NB			_								
308H	24/12	20/10	20/10C												
304L	24/12	20/10			=		Dans	certains	cas, la ve	ersion MI	G possè	de un tau	ıx plus éle	evé de Si	

Exemple: TIG 20/10 et MIG 20/10S

SELECT/	ARC 18,	/8MN														TIG MIG
Clas	ssification					Analy	se chi	mique	type (%)			Caractér	ristiques mécar	niques du méta	l déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
~ ER307	W 18 8 Mn	G 18 8 Mn	0.09	0.9	7.0	19.0	0.1	0.08	8.5	<0.02	<0.01	Base	450	650	40	+20°C → 120

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables austénitiques au manganèse et pour les aciers réputés difficilement
- APPLICATIONS: TP, voie routière, ferroviaire ou fluviale, carrière, cimenterie. Idéal en sous couche avant rechargement avec les nuances sensibles à la fissuration ou dans le cas de soudage hétérogène entre un acier inoxydable et un acier de construction...

+20°C → 110

-196°C → 50

SELECTARC 20/10 TIG Caractéristiques mécaniques du métal déposé **AWS A5.9** ISO 14343-A Si Ni S Rp0.2 (MPa) Rm (MPa) A5 (%) Cr Fe ER308L W 199L 0.015 0.42 1.8 19.5 9.8 <0.02 < 0.01 Base 430 600 38 +20°C → 150 | -196°C → 50

- PROPRIÉTÉ: Métal d'apport à bas carbone pour le soudage d'acier inoxydable type 304/1.4301. Le faible taux d'impureté, ainsi que l'analyse chimique resserré, permet une plus grande matrise des caractéristiques mécaniques et une meilleure résistance à la corrosion. L'état de surface du fil ainsi que son haut niveau de propreté permet un dévidage optimal dans le cas d'applications automatisées (TIG Orbital par exemple).
- APPLICATIONS: Chaudronnerie, tuyauterie, appareil sous pression.

SELECTARC 20/10S TIG MIG **AWS A5.9** ISO 14343-A C Si Mn Cr Mo Cu Fe Rp0.2 (MPa) Rm (MPa) A5 (%)

W 19 9 L Si G 19 9 L Si 0.015 • PROPRIÉTÉ: Métal d'apport à bas carbone pour le soudage d'acier inoxydable type 304/1.4301. Le faible taux d'impureté et ainsi que l'analyse chimique resserrée permet une plus grande maîtrise des caractéristiques mécaniques et une meilleure résistance à la corrosion. La présence d'un taux plus élevé de silicium permet une meilleure fluidité du bain. L'état de surface du fil ainsi que son haut niveau de propreté assure un

0.08

10.0

Base

400

600

38

0.1

20.0

1.8

dévidage optimal en particulier pour les applications automatisées. • APPLICATIONS: Chaudronnerie, tuyauterie, appareil sous pression.

ER308L Si

	ARC INOX 8												TIG
Clas	ssification			Analy	se chim	ique typ	e (%)			Caracté	ristiques mécar	niques du métal	déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER308L	W 199L	0.015	0.42	1.8	19.9	9.8	<0.03	<0.02	Base	350	520	35	+20°C → 80

• PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'acier inoxydable type 304.

0.9

• APPLICATIONS: Assemblages aciers inoxydables courant.

SELECT	ARC INOX 8S														MIG
Clas	sification			Caractéi	ristiques mécar	niques du méta	déposé								
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER308LSi	G 199 L Si	0.015	0.9	1.8	20.0	0.1	0.08	10.0	<0.03	<0.02	Base	350	520	35	+20°C → 80

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'acier inoxydable type 304. Taux de silicium plus élevé pour une meilleure fluidité du bain.
- APPLICATIONS: Assemblages aciers inoxydables courant.

SELECT/	ARC 20	/10C													TIG MIG
Clas	ssification				Ar	nalyse cl	himique	type (%	6)			Caractéri	stiques mécar	niques du mét	al déposé
AWS A5.9	ISO 14	1343-A	С	Si	Mn	Cr	Ni	Р	S	Fe	FN	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER308H	W 199H	G 199H	0.05	0.4	1.8	19.9	9.7	<0.02	<0.015	Base	6	380	580	35	+20°C → 100

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables type 304H à teneur en carbone plus élevé (0.04 % à 0.08 %).
- APPLICATIONS: Ensemble devant résister au fluage et à l'oxydation à température (400 °C-750 °C) : tuyauterie, appareil à pression.

SELECT/	ARC 20	/10T															TIG MIG
Clas	ssification					Ar	nalyse	chimic	que typ	e (%)				Caractérist	iques méca	niques du n	métal déposé
AWS A5.9	ISO 14	1343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Ti	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
~ER321	W Z 19 9 Ti	G Z 19 9 Ti	0.03	0.5	1.5	18.0	0.3	0.3	10.5	0.2	<0.03	<0.02	Base	460	630	35	+20°C → 110

- PROPRIÉTÉ: Métal d'apport stabilisé au titane utilisé pour le soudage des aciers inoxydables type 321, 316Ti. Bonne protection face à la corrosion inter-granulaire. Température de service : jusqu'à 800 °C.
- APPLICATIONS: Aéronautique, turbine à gaz, tuyauterie.

SELI	ECTARC 20	/10NB															TIG
	Classification					Ana	alyse c	himiqu	ue type	e (%)				Caractéristic	ques mécar	iques du i	métal déposé
AWS A5.9	ISO 14343-A	AMS	С	Si	Mn	Cr	Mo	Cu	Ni	Nb	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER347	W 19 9 Nb	5680	0.045	0.4	1.5	19.4	0.1	0.1	9.3	0.6	<0.02	<0.01	Base	490	660	35	+20°C → 140

- PROPRIÉTÉ: Métal d'apport stabilisé au niobium utilisé pour le soudage des aciers inoxydables type 347, 321, 316Ti. Bonne protection face à la corrosion inter-granulaire. Température de service : jusqu'à environ 800 °C.
- APPLICATIONS: Aéronautique, pétrochimie, énergie.

ACIERS INOXYDABLES

SELECTARC 20/10NBS

TIG MIG

Cla	assification					Anal	yse ch	nimiqu	ie type	e (%)				Caract	téristiques	mécan	iques du méta	l déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Nb	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	′(J)
ER347Si	W 19 9 Nb Si	G 19 9 Nb Si	0.03	0.8	1.5	19.5	0.2	0.1	9.8	0.5	0.02	0.01	Base	460	630	33	+20°C → 110	-196°C → 30

- PROPRIÉTÉ: Métal d'apport stabilisé au niobium utilisé pour le soudage des aciers inoxydables type 347, 321, 316Ti. Bonne protection face à la corrosion inter-granulaire. Température de service : jusqu'à environ 800°C. Taux de silicium plus élevé pour une meilleure fluidité du bain.
- APPLICATIONS: Aéronautique, pétrochimie, énergie.

SELECTARC 20/10M

TIG

Clas	ssification				Analy	se chi	mique	type (%)			Caract	téristiques	mécani	ques du métal	déposé		
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Ni	Mo	Cu	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)			
ER316L	W 19 12 3L	0.02	0.45	1.8	18.6	12.3	2.8	0.08	<0.02	<0.01	Base	410	610	35	+20°C→120 -196°C→4			

- PROPRIÉTÉ: Métal d'apport à bas carbone pour le soudage d'acier inoxydable type 316/1.4401 et 316L. Bonne résistance à la corrosion atmosphérique et saline. Le faible taux d'impureté et ainsi que l'analyse chimique resserré permet une plus grande maîtrise des caractéristiques mécaniques et une meilleure résistance à la corrosion. L'état de surface du fil ainsi que son haut niveau de propreté permet un dévidage optimal dans le cas d'applications automatisées (TIG Orbital par exemple).
- APPLICATIONS: Chaudronnerie, tuyauterie, appareil sous pression, centrale thermique, construction en bord de mer et tout type de construction métallique n'excédant pas 400 °C en température de service.

SELECTARC 20/10MS

TIG MIG

(Classification				I	Analys	e chir	nique	type (%)			Caract	éristiques	mécan	iques du métal	l déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	(J)
ER316LSi	W 19 12 3 L Si	G 19 12 3 L Si	0.018	0.85	1.7	18.5	2.7	0.1	12.2	<0.02	<0.01	Base	430	620	35	+20°C → 120	-196°C → 45

- PROPRIÉTÉ: Métal d'apport à bas carbone pour le soudage d'acier inoxydable type 316/1.4401 et 316L. Bonne résistance à la corrosion atmosphérique et saline. Le faible taux d'impureté et ainsi que l'analyse chimique resserré permet une plus grande maîtrise des caractéristiques mécaniques et une meilleure résistance à la corrosion. La présence d'un taux plus élevé de silicium permet une meilleure fluidité du bain. L'état de surface du fil ainsi que son haut niveau de propreté assure un dévidage optimal en particulier pour les applications automatisées.
- APPLICATIONS: Chaudronnerie, tuyauterie, appareil sous pression, centrale thermique, construction en bord de mer et tout type de construction métallique n'excédant pas 400°C en température de service.

SELECTARC INOX 16

TIG

Clas	ssification				Analy	yse chi	mique	type (%	6)			Caractéris	tiques méca	ıniques dı	ı métal déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER316L	W 19 12 3 L	0.02	0.45	1.8	18.6	2.7	0.08	11.6	<0.03	<0.02	Base	350	520	30	+20°C → 80

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'acier inoxydable type 316.
- APPLICATIONS: Assemblages aciers inoxydables courant.

SELECTARC INOX 16S

MIG

Clas	ssification				Analy	se chi	mique	type ((%)			Caract	téristiques	mécaniq	ues du métal	déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	′(J)
ER316LSi	G 19 12 3 L Si	0.08	0.85	1.7	18.5	2.7	0.1	11.6	<0.03	<0.02	Base	350	510	30	+20°C → 80	-120°C → 32

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'acier inoxydable type 316. Taux de silicium plus élevé pour une meilleure fluidité du bain.
- APPLICATIONS: Assemblages aciers inoxydables courant.

SELECTARC 20/10MN

TIG MIG

Clas	ssification				An	alyse	chimi	que ty	pe (%)				Caract	éristiques i	mécan	iques du métal	l déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	N	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	(J)
ER316LMn	W 20 16 3 Mn N L	0.02	0.5	7.0	20.0	2.0	0.15	16.0	<0.02	<0.01	0.15	Dogo	500	650	30	+20°C → 140	-196°C → 95
Eno i OLIVIII	G 20 16 3 Mn N L	0.02	0.5	7.0	20.0	3.0	0.15	10.0	<0.02	<0.01	0.15	Dase	500	000	30	+20 C→ 140	1-190 0-95

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables type 316, 316L 316Ti, 304, 304L. L'ajout de Mn permet un dépôt sans ferrite et donc amagnétique.
- APPLICATIONS: Cryogénie.

SELECTARC 20/10MNB

TIO

Clas	ssification				Ar	nalyse	chim	ique ty	/pe (%	(a)			Caractéri	stiques mécai	niques du mét	al déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Nb	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER318	W 19 12 3 Nb	0.04	0.4	1.7	19.6	2.6	0.2	11.5	0.6	< 0.02	<0.01	Base	400	620	35	+20°C → 120

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables type 318, 316Ti. Bonne protection face à la corrosion inter granulaire en présence d'acide, à la corrosion par piqure. Température de service : -120°C à 400°C.
- APPLICATIONS: Pétrochimie, application marine.

SELECTARC 20/10MNBS

MIG

Clas	ssification				Ana	alyse cl	himiqu	e type	(%)				Caractéris ⁻	tiques mécar	niques du r	nétal déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Nb	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
~ER318	G 19 12 3 Nb Si	0.04	0.85	1.7	19.6	2.6	0.2	11.5	0.6	<0.02	<0.01	Base	400	620	35	+20°C → 120

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables type 318, 316Ti. Bonne protection face à la corrosion inter granulaire en présence d'acide, à la corrosion par piqure. Température de service : -120°C à 400°C. Taux de silicium plus élevé pour une meilleure fluidité du bain.
- APPLICATIONS: Pétrochimie, application marine.

■ SELECTARC 24/12

TIG MIG

Clas	ssification				Analys	se chin	nique t <u>y</u>	ype (%))			Caractéris	stiques mécar	niques du mét	al déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER309L	W 23 12 L	0.015	0.4	1.8	23.2	0.1	0.08	13.8	<0.02	<0.01	Base	420	620	35	+20°C → 140

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables type 309, 309L ainsi que pour les assemblages hétérogènes de type 304 ou 316 sur aciers faiblement alliés.
- APPLICATIONS: Appareil chaudronné, travaux publics et réparation/maintenance.

■ SELECTARC 24/12S

TIG MIG

Clas	ssification					An	alyse	chimic	jue typ	e (%)				Caractéris	tiques mécar	niques du mé [.]	tal déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	FN	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER309LSi	W 23 12 L Si	G 23 12 L Si	0.015	0.85	1.8	23.3	0.1	0.1	13.7	<0.02	<0.01	Base	~12	420	600	35	+20°C → 130

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables type 309, 309L ainsi que pour les assemblages hétérogènes de type 304 ou 316 sur aciers faiblement alliés. Taux de silicium plus élevé pour une meilleure fluidité du bain.
- APPLICATIONS: Appareil chaudronné, travaux publics et réparation/maintenance.

SELECTARC 24/12M

TIG MIG

Cla	ssification					An	alyse c	himiqu	ie type	(%)				Caractéristic	ques méca	niques du I	métal déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	FN	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
~ER309LMo	W 23 12 2 L	G 23 12 2 L	0.015	0.55	1.5	21.5	2.6	0.1	14.5	<0.02	<0.01	Base	~12	400	600	35	+20°C → 120

- PROPRIÉTÉ: Identique au 309L et 309LSi, la présence de molybdène limite la corrosion face aux acides.
- APPLICATIONS: Appareil chaudronné, travaux publics et réparation/maintenance.

SELECTARC 25/20

TIG MIG

Clas	ssification					Analy	se chi	mique	e type	(%)			Cara	ctéristique	s mécani	iques du métal	déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	(J)
ER310	W 25 20	G 25 20	0.1	0.45	1.7	26.0	0.1	0.1	20.5	<0.02	< 0.01	Base	380	580	40	+20°C →170	-196°C → 60

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers inoxydables austénitiques réfractaires de type 310 ainsi que pour des assemblages hétérogènes entre acier réfractaire et acier inoxydable.
- APPLICATIONS: Assemblage soumis à des températures d'environ 1100 °C et en atmosphère oxydante.

SELECTARC 29/9

TIG MIG

Clas	ssification					Analy	se chir	nique t	ype (%)			Caractéri	stiques méd	aniques du mo	étal déposé
AWS A5.9	ISO 14	1343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER312	W 29 9	G 29 9	0.1	0.4	1.8	30.2	0.15	0.1	9.3	<0.02	<0.02	Base	520	730	25	+20°C→100

- PROPRIÉTÉ: Métal d'apport utilisé pour un soudage soumis à de fortes contraintes ou pour les assemblages hétérogènes. Bonne résistance à la fissuration, à température et à l'oxydation.
- APPLICATIONS: Assemblage fortement sollicité et acier difficilement soudable type acier à outil, HLE, moulé, tige de vérin...

■ SELECTARC 18/15

TIG MIG

	<u> </u>																
Cl	assification					Aı	nalyse	chim	ique t	ype (%)				Caractéris	tiques mécar	niques du mét	tal déposé
AWS A5.28	ISO 14	343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	FN	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER317L	W 18 15 3 L	G 18 15 3 L	0.01	0.4	1.4	18.8	3.5	0.10	13.6	<0.03	<0.02	Base	~10	>380	>580	>30	-

- PROPRIÉTÉ: Métal d'apport avec 3.5 % de Mo utilisé pour le soudage des aciers inoxydables type Cr-Ni-Mo. Meilleure résistance à la corrosion par crevasse et piqure que le 316L.
- APPLICATIONS: Chimie, pétrochimie, papeterie, condenseur.

aciers inoxydables

SELECTARC 20/25CU

TIG MIG

(Classification					Analys	se chi	mique	e type	(%)			Carac	téristique	s mécan	iques du métal	déposé
AWS A5.9	343-A	С	Si	Mn	Cr	Мо	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	(J)	
ER385	W 20 25 5 Cu L	G 20 25 5 Cu L	0.01	0.4	1.8	20.0	4.5	1.5	25.0	<0.02	<0.01	Base	350	550	36	+20°C → 120	-196°C→80

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers totalement austénitiques type 904L, Uranus B6. Très bonne résistance à la corrosion par les acides sulfuriques, chlorhydriques ou phosphoriques.
- APPLICATIONS: Pétrochimie, chimie, milieu agricole.

SELECTARC 27/31CU

TIG MIG

Clas	ssification				Analy	yse chi	mique	type (%	6)			Caractéris	tiques méca	aniques du r	nétal déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER383	W 27 31 4 Cu L	0.01	0.15	1.8	27.0	3.5	1.0	31.0	<0.02	<0.01	Base	350	550	35	+20°C → 100

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers totalement austénitiques type Uranus B28, Sanicro 28. Très bonne résistance à la corrosion par les acides sulfuriques, chlorhydriques ou phosphoriques.
- APPLICATIONS: Pétrochimie, chimie.

SELECTARC M13/0

TIG MIG

	Classification AWS A5.9 ISO 14341-A					Analyse (chimique	type (%))		Caracté	ristiques mécar	niques du métal	déposé
AWS A5.9	ISO 14	341-A	AMS	С	Si	Mn	Cr	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER410	W 13	G 13	5776	0.3	0.3	0.5	13.0	<0.03	<0.02	Base	250*	450	15	+20°C → 90

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers ferritiques ou martensitiques à 13% de Cr type 410, 420, 403, 405, 416. Bonne résistance à la corrosion atmosphérique (eau et vapeur) et à l'oxydation sulfureuse (jusqu'à 900 °C).
- APPLICATIONS: Automobile (échappement), robinetterie, portée de vannes.

SELECTARC M13/0C

	Classification			Analyse	chimique	type (%))		Caracté	ristiques mécai	niques du métal	déposé
AWS A5.9	ISO 14341-A	С	Si	Mn	Cr	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	Dureté (HB)
ER420	-	0.3	0.5	0.55	13.0	< 0.03	<0.02	Base	-	-	-	~350

- PROPRIÉTÉ: Métal d'apport pour le rechargement TIG sous protection gazeuse de type aciers inoxydables à 13 % de chrome élaborés pour résister à la corrosion atmosphérique, d'eau et vapeur.
- APPLICATIONS: Rechargement d'équipements de tuyauteries, robinetteries, portées de vannes, pour des températures de service n'excédant pas 450 °C.

SELECTARC M13/4

TIG MIG

Classif	ication					Ana	lyse cl	himiqu	e type	(%)			Caract	éristiques	mécani	iques du méta	ll déposé
AWS A5.9	ISO 14	343-A	С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)	KV (J)
ER410NiMo	W 13 4	G 13 4	0.02	0.45	0.5	12.3	0.5	0.08	4.2	<0.03	<0.01	Base	750*	840	19	+20°C → 120	-60°C → 50

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers martensitique au Cr-Ni type 410NiMo.
- APPLICATIONS: Réparation pompes et turbines en acier moulé.

SELECTARC F17/0

TIG MIG

Clas	ssification					Analy	se chin	nique t	ype (%	o)			Caractéri	stiques méd	aniques du m	étal déposé
AWS A5.9	9 ISO 14343-A		С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER430	W 17	G 17	0.05	0.4	0.5	16.5	0.1	0.08	0.3	<0.02	<0.01	Base	300*	450	15	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers ferritiques ou martensitiques à 17% de Cr type 430. Bonne résistance au milieu salin, aux acides organiques dilués à des températures de service < à 450 °C et à l'oxydation sulfureuse (jusqu'à 900 °C).
- APPLICATIONS: Automobile (échappement), robinetterie, portée de vannes.

SELECTARC D22/09

	, , , ,														
Clas	sification				Analy	se chi	mique	type (%)			Caracté	éristiques	mécani	ques du métal déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Mo	Ni	N	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER2209	W 22 9 3 N L	0.012	0.5	1.7	23.0	3.2	8.8	0.14	<0.02	<0.01	Base	600	780	26	+20°C → 150 -50°C → 100

- PROPRIÉTÉ: Métal d'apport à très bas carbone utilisé pour le soudage des aciers dit duplex (Austéno-ferritique) type Uranus 45N, 2205, 2304. Bonne résistance aux milieux corrosifs sévères (attaque inter cristalline, piqure, crevasse, corrosion sous tension).
- APPLICATIONS: Pompe, bateau, systèmes de pompage soumis aux milieux chlorurés (eau de mer).
- * Après traitement thermique, voir fiche technique pour plus de détails.

SELECTARC D25/09

TIG MIG

	Classification					Analy	se chi	mique	type (%)			Carao	ctéristique	s mécan	iques du métal	déposé
AWS A5.9 ISO 14343-A			С	Si	Mn	Cr	Mo	Ni	N	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV	(J)
ER2594	W 25 9 4 N L	G 25 9 4 N L	0.012	0.5	0.6	25.5	4.0	9.2	0.25	<0.03	<0.015	Base	630	820	25	+20°C → 130	-40°C → 90

- PROPRIÉTÉ: Métal d'apport à très bas carbone utilisé pour le soudage des aciers dit super duplex (Austéno-ferritique) type Uranus 52N,52N+,70N ou 2507. Bonne résistance aux milieux corrosifs sévères, combinés à des hautes caractéristiques mécaniques.
- APPLICATIONS: Pompe, bateau, système de pompage soumis aux milieux chlorurés (eau de mer).

SELECTARC D25/09W

TIG MIG

	Classification					I	Analy	se cl	nimiq	ue ty	pe (%))			Caracté	ristiques	mécan	iques du métal	déposé
AWS A5.9	343-A	С	Si	Mn	Cr	Мо	W	Cu	Ni	N ₂	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)	
ER2594	W 25 9 4 N L	G 25 9 4 N L	0.018	0.3	0.8	25.2	3.7	0.7	0.6	9.3	0.25	<0.03	<0.015	Base	730	900	25	+20°C → 150	-40°C → 120

- PROPRIÉTÉ: Métal d'apport à très bas carbone utilisé pour le soudage des aciers dit super duplex (Austéno-ferritique) type Uranus 52N,52N+,70N ou 2507. Bonne résistance aux milieux corrosifs sévères, combinés à des hautes caractéristiques mécaniques.
- APPLICATIONS: Pompe, bateau, système de pompage soumis aux milieux chlorurés (eau de mer).

■ SELECTARC 21/10MA

TIG MIG

Clas	ssification			А	nalyse c	himique	e type (º	%)			Caractéri	stiques méd	aniques du m	étal déposé
AWS A5.9	ISO 14343-A	С	Si	Mn	Cr	Ni	N	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
-	W Z 21 10 N H	0.08	1.5	0.5	21.0	10.0	0.15	<0.02	<0.01	Base	450	650	38	+20°C → 120

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers de compositions similaires type 253MA. Résistance à température jusqu'à plus de 1000 °C, haute résistance au fluage.
- APPLICATIONS: Four, pétrochimie, raffinerie.

■ SELECTARC 16/8M

TIG MIG

	Classification					Analy	se chin	nique ty	/pe (%)				Caractéris	tiques mécar	niques du mé	tal déposé
AWS A5.9	AWS A5.9 ISO 14343-A		С	Si	Mn	Cr	Mo	Cu	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ER16-8-2	W 1682	G 16 8 2	0.1	0.45	2.1	16.5	2.0	<0.2	8.6	<0.03	<0.02	Base	-	-	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers type 304H, 321, 316H, 347H.
- APPLICATIONS: Pétrochimie, incinérateur, industrie nucléaire.

■ SELECTARC 17/4CU

TIG MIG

		Classif	ication					Analy	se chim	ique typ	e (%)				
AWS A5.9	EN 3889	ISO 14	343-A	AIR 9117	AMS	С	Si	Mn	Cr	Cu	Ni	Nb	Р	S	Fe
ER630	X5CrNiCu17-4	W Z 17 4 Cu	G Z 17 4 Cu	Z5CNV17-04	5825	0.03	0.5	0.6	16.0	3.5	5.0	0.2	<0.02	<0.01	Base

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers de compositions similaires type 17-4PH, X5CrNiCuNb17-4-4. XAS.
- APPLICATIONS: Aéronautique, pompe et turbine marine.

■ SELECTARC 17/4MO

TIG MIG

	Classif	fication				,	Analyse o	chimique	type (%)		
EN4683	AIR 9117	С	Si	Mn	Cr	Mo	Ni	Р	S	Fe		
X4CrNiMo16-5-1	W Z 17 4 Mo	G Z 17 4 Mo	Z8CND17-04	0.05	0.3	0.9	16.0	1.0	4.4	<0.03	<0.02	Base

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers de compositions similaires type X2CrNiMo 13-4, APX4S*.
- APPLICATIONS: Roue Pelton, pompe et turbine marine.

■ SELECTARC 11/3M

TIG MIG

	Classif	ication					A	nalyse c	chimique	e type (9	%)			
EN3890	EN3890 ISO 14343-A AIR 9117					Mn	Cr	Ni	Mo	٧	N	Р	S	Fe
X11CrNiMoV12-3	W Z 12 3 Mo V	G Z 12 3 Mo V	Z12CNDV12	0.12	0.3	0.7	11.8	2.7	1.7	0.3	0.03	<0.035	<0.025	Base

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aciers de compositions similaires.
- APPLICATIONS: Réparation des pales de turbines.

■ SELECTARC 22/21CO

Classi	Classification Analyse chimique type (%)										Caractéristic	ques mécan	iques du	métal déposé			
ISO 14343-A	AIR 9117	AMS	С	Si	Mn	Cr	Ni	Mo	Co	W	Nb	N	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
W Z 22 21 3 CoWNbN	Z12CNKDW20	5794	0.1	0.4	1 5	22.0	21.0	3.2	20.0	2.8	1.0	0.15	Dooo	750	900	16	+20°C → 55
G Z 22 21 3 CoWNbN	ZIZGNKDWZU	3794	0.1	0.4	1.0	22.0	21.0	3.2	20.0	2.0	1.0	0.15	Dase	730	900	10	+20 0 - 33

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'alliages de composition similaires Type Alloy N155. Bonne résistance aux températures élevées et à la corrosion.
- **APPLICATIONS:** Aéronautique.

ALLIAGES DE NICKEL

LES + DE LA GAMME : large gamme pouvant souder toutes les nuances nickel du marché. Qualité exceptionnelle répondant aux exigences des secteurs de l'énergie, de l'aéronautique et de l'industrie spatiale.

■ Produits aussi disponibles en super-clean sur demande (décapage chimique spécifique grade Y!).

■ SELECTARC NI22 TIG MIG Caractéristiques mécaniques du métal déposé **AWS A5.14** ISO 18274 С Si Mn Cr Мо W Fe S Ni Rp0.2 (MPa) Rm (MPa) KV (J) A5 (%) ERNiCrMo-10 S-Ni6022 (NiCr21Mo13Fe4W3) 0.01 0.05 0.1 3.0 <0.01 <0.01 Base 21.4 | 13.2 | 3.0 350 550 +20°C → 100

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel C 22 et nuance similaire C276, aciers inoxydables possédant une grande résistance à la corrosion.
- APPLICATIONS: Pétrochimie, chimie, équipements Off-Shore, appareils de désulfurisation des fumées.

SELECT	CTARC NI59														TIG MIG
	Classification				Anal	yse chi	mique	type (%	%)			Caractéris	tiques mécar	niques du mé	tal déposé
AWS A5.14	ISO 18274	С	Si	Mn	Cr	Mo	Al	Fe	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNiCrMo-13	S-Ni6059 (NiCr23Mo16)	0.01	0.05	0.1	23.0	15.0	0.1	0.2	<0.01	<0.01	Base	420	740	30	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel type Alloy 59 et aciers inoxydables spéciaux. Excellente résistance à la corrosion.
- APPLICATIONS: Unités de dépollution, de désalinisation et de désulfurisation.

	SELECTARC NI60													TIG MIG
	Classification			А	nalyse c	himique	e type (°	%)			Caractéris	stiques mécar	niques du mé	tal déposé
AWS A5.14	ISO 18274									Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)	
ERNiCu-7	S-Ni 4060 (NiCu30Mn3Ti)	0.03	0.4	3.5	29.0	2.2	0.6	<0.01	<0.01	Base	320	510	38	+20°C → 180

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage et le rechargement des alliages des cupro-nickel et aciers plaqués au cupro-nickel type Alloy 400, CuNi 90/10, CuNi 70/30 NiCu30Fe. Aussi utilisé pour le soudage hétérogène de nuances précédentes avec des aciers carbones.
- APPLICATIONS: Chimie, pétrochimie, construction navale, unité de désalinisation.

SELECT	CTARC NI61													TIG MIG
	Classification			А	nalyse c	himique	e type (°	%)			Caractérist	iques mécaniq	ues du m	étal déposé
AWS A5.14	ISO 18274	С	Si	Mn	Cu	Ti	Fe	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNi-1	S-Ni 2061 (NiTi3)	0.02	0.2	0.3	0.1	3.3	0.1	<0.01	<0.01	Base	350	540	40	+20°C → 250

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des nickels purs type Ni 200, Ni 201, Ni 99.2, LC-Ni99 et pour le soudage hétérogène des aciers sur les alliages de nickel ou cupro-nickel.
- APPLICATIONS: Industrie chimique et énergétique (travail de la soude, fibres synthétiques), sous couche assemblage.

	CTARC NI65															TIG MIG
	Classification				Ana	alyse c	himiqu	e type	(%)				Caractéri	stiques mécaniqu	es du méta	l déposé
AWS A5.14	ISO 18274	С	Si	Mn	Cr	Мо	Cu	Ti	Fe	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNiFeCr-1	S-Ni 8065 (NiFe30Cr21Mo3)	0.02	0.2	0.6	20.5	3.2	1.8	0.9	30.0	<0.01	<0.01	41.0	-	550 (valeur type)	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages Ni-Fe-Cr-Mo type Alloy 825, NiCr21Mo. Bonne résistance aux acides oxydants, réducteurs, phosphoriques et sulfuriques ainsi qu'à l'eau de mer.
- APPLICATIONS: Chimie, pétrochimie, constructions navale, unité de désalinisation.

SELECTARC NI82 TIG MIG Caractéristiques mécaniques du métal déposé Analyse chimique type (%) **AWS A5.14** ISO 18274 С Si Mn Cr Nb Ti Fe Ρ S Ni Rp0.2 (MPa) Rm (MPa) A5 (%) KV (J) ERNiCr-3 S-Ni 6082 (NiCr20Mn3Nb) 0.03 | 0.2 | 3.2 | 20.5 | 2.3 | 0.3 2.0 <0.01 <0.01 Base 42 +20°C → 200 | -196°C → 100 430 670

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages à haute teneur en Nickel type Inconel 600, Incolloy 800. Utilisé pour les assemblages hétérogènes : acier faiblement allié avec acier inoxydable ou base nickel.
- APPLICATIONS: Cryogénie (base 5 % et 9 % de Nickel), apparéils soumis aux acides à très haute température, réparation acier difficilement soudable, sous couche.

SELI	ECTARC NI90															TIG MIG
	Classification					Analys	e chin	nique 1	type (%	b)			Caractérist	iques mécar	niques du mé	étal déposé
AWS A5.14	ISO 18274	AMS	С									Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)	
-	S-Ni 7090 (NiCr20Co18Ti3)	5829	<0.13	0.3	0.5	20.0	0.1	1.5	2.5	1.0	16.0	Base	-	-	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage désulfurisation type NIMONIC 80A et 90.
- APPLICATIONS: Moteur à combustion, turbine à gaz, chambre de combustion, pétrochimie, four.

SEL	ECTARC NI263															TIG MIG
	Classification				1	Analys	e chim	ique t	/pe (%)			Caractérist	iques mécar	niques du mé	tal déposé
AWS A5.14	ISO 18274	AMS	С	Si	Mn	Cr	Мо	Al	Ti	Fe	Co	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
-	S-Ni 7263 (NiCr20Co20Mo6Ti2)	5966	0.05	0.25	0.05	20.0	5.9	0.5	2.15	0.7	20.0	Base	-	630	12	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel type NIMONIC 263.
- APPLICATIONS: Aéronautique (réparation et maintenance moteur).

	CTARC NI276												TIG MIG
	Classification			Analy	se chim	ique typ	e (%)			Caractér	istiques mécai	niques du méta	al déposé
AWS A5.14	ISO 18274	С	Si	Mn	Cr	Mo	Fe	W	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNiCrMo-4	S-Ni 6276 (NiMo16Cr15Fe6W4)	0.01	0.05	0.4	16.0	16.0	6.0	3.5	Base	480	780	35	+20°C → 100

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages à haute teneur en nickel type Alloy C 276, NiMo16Cr15W, Hastelloy 276. Excellente résistance aux oxydes, chlorides, acides et environnements salins.
- APPLICATIONS: Tuyauterie ou corps d'appareils utilisés dans l'industrie chimique ou unité de dépollution (désulfurisation du gaz).

SELEC	CTARC NI601														T	IG MIG
	Classification				An	alyse c	himiqu	e type	(%)				Caractéris ^a	tiques mécanique	s du métal	déposé
AWS A5.14	ISO 18274	С	Si	Mn	Cr	Cu	Al	Fe	Co	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNiCrFe-11	S-Ni 6601 (NiCr23Fe15Al)	0.05	0.2	0.5	23.0	0.1	1.3	14.0	0.3	<0.01	<0.01	Base	-	650 (valeur type)	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de Ni-Cr-Fe-Al type Alloy 601. Utilisé dans les constructions soumises à des températures de 1150 °C.
- APPLICATIONS: Four, équipement pour traitement thermique.

SELECT	CTARC NI617														TIG MIG
	Classification				Analy	se chim	ique typ	oe (%)				Caractérist	iques méc	aniques d	u métal déposé
AWS A5.14	ISO 18274	С	Si	Mn	Cr	Mo	Al	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)			
ERNiCrCoMo-1	S-Ni6617 (NiCr22Co12Mo9)	0.07	0.2	0.5	22.0	8.5	1.0	0.4	11.2	0.9	Base	>450	>750	>42	+20°C→>110

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages réfractaires avec des températures de service d'environ 1100 °C.
- APPLICATIONS: Turbine à gaz, chambre de combustion, pétrochimie, four.

	CTARC NI625															TIG MIG
	Classification					Analy	se ch	nimiq	ue ty	pe (%)			Carac	téristiques	mécani	iques du métal déposé
AWS A5.14	ISO 18274	AMS	С	Si	Mn	Cr	Мо	Fe	Nb	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
FRNiCrMo-3	S-Ni 6625 (NiCr22Mo9Nh)	5837	0.01	0 15	0.1	22 0	87	กร	36	~0.01	<0.01	Rase	520	790	40	+20°C → 160 -196°C → 100

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages à haute teneur en nickel type Inconel 625, aciers inoxydables super alliés ou hétérogènes entre acier faiblement allié et acier inoxydable ou base nickel. Bonne résistance aux différents types de corrosion.
- APPLICATIONS: Cryogénie (sur acier à 9 % de Ni), appareil soumis à des attaques oxydantes ou corrosives, aéronautique.

SELECTARC NI690

TIG MIG

	TAILE ILICOU																	
	Classification					Α	nalys	e chir	nique	type	(%)				Caract	éristiques	mécan	iques du métal déposé
AWS A5.14	AMS	С	Si	Mn	Cr	Мо	Fe	Nb	Al	Ti	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)	
ERNiCrFe-7	S-Ni 6052 (NiCr30Fe9)	-	0.01	0.2	0.9	30.0	<0.1	9.0	<0.1	0.5	0.5	<0.01	<0.01	Base	410	640	37	+20°C → 180

- PROPRIÉTÉ: Métal d'apport base nickel avec une haute teneur en chrome utilisé pour le soudage des alliages de nickel type Alloy 690. Excellente résistance à la corrosion ainsi qu'à l'oxydation à haute température. Il peut être utilisé en rechargement sur des aciers faiblement alliés et des aciers inoxydables ainsi que pour les assemblages hétérogènes acier/nickel.
- APPLICATIONS: Industrie nucléaire.

SELECTARC NI718

TIG MIG

	Classification				A	Analyse	e chim	ique t	ype (%	6)			Caractéris	tiques mé	caniques	du métal déposé
AWS A5.14	AWS A5.14 ISO 18274 AMS			Si	Mn	Cr	Мо	Al	Ti	Fe	Nb	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	Dureté (HRC)
ERNiFeCr-2	S-Ni 7718 (NiFe19Cr19Nb5Mo3)	5832	0.04	0.2	0.2	19.0	3.0	0.5	0.9	Base	5.0	52.0	>900	>1200	>8	~45 (après TTh)

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel type Inconel 718, X750 et 706. Très bonne résistance à l'abrasion métallique jusqu'à 700 °C.
- APPLICATIONS: Aéronautique, réservoir cryogénie, rechargement d'outils travaillant à chaud.

SELECTARC NICR80

TIG MIG

	Classification				Ana	alyse cl	himiqu	e type	(%)			Caractéris	tiques méca	aniques du i	nétal déposé
AWS A5.14	EN 4329	AMS	С	Si	Mn	Cr	Cu	Fe	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
~ERNiCr-6	NiCr20	5676	0.1	0.2	0.5	20.0	0.1	0.5	<0.02	<0.01	Base	-	>560	>25	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel type Incoloy DS, Inconel 600, Brightray, Nimonic75.
- APPLICATIONS: Aéronautique, échappement.

■ SELECTARC NIW

TIG MIG

	Classification						Analy	se chir	nique	type	(%)				Caractéris	tiques mécanique	s du me	étal déposé
AWS A5.14						Cr	Cu	Co	Мо	Fe	W	Р	S	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNiMo-3	S-Ni 1004 (NiMo25Cr5Fe5)	5786	0.03	0.2	0.4	5.0	<0.01	<0.01	24.0	6.0	0.03	<0.01	<0.01	0.02	-	690 (valeur type)	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel type Hastelloy W.
- APPLICATIONS: Aéronautique, pétrochimie (hydrocraqueur).

SELECTARC NIX

TIG MIG

	Classification					Anal	yse ch	nimiqu	e type	(%)				Caractéristiq	ues mécanio	ques du méta	al déposé
AWS A5.14	ISO 18274	AMS	С	Si	Mn	Cr	Мо	Cu	Co	Al	Fe	W	Ni	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
ERNiCrMo-2	S-Ni 6002 (NiCr21Fe18Mo9)	5798	0.07	0.3	0.6	22.0	8.5	0.25	1.0	0.3	19.3	0.8	Base	420	680	23	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de nickel type Hastelloy X. Très bon compromis entre résistance à l'oxydation et caractéristiques mécaniques à hautes températures.
- APPLICATIONS: Aéronautique, turbine à gaz, chambre de combustion.

SELECTARC FENI36

TIG MIG

	Classification			Ana	lyse chin	nique type (%))		Caractéri	stiques mécar	niques du mét	al déposé
-	-	С	Si	Mn	Ni	Р	S	Fe	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
-	-	0.01	0.1	0.3	36.0	<0.010	<0.010	Base	300	400	28	-

- PROPRIÉTÉ: Métal d'apport déposant un alliage de ferronickel utilisé pour le soudage d'alliages type Invar. Matériaux présentant une dilatation thermique très faible.
- APPLICATIONS: Moule pour composite, revêtement pour cuve de gaz naturel.

■ SELECTARC FENI50

TIG MIG

	Classification			Analyse	chimiqu	e type (%	6)		Caracté	éristiques mécar	niques du métal	déposé
-	-	С	Si	Mn	Ni	Fe	Р	S	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	KV (J)
-	-	0.03	0.2	0.5	55.0	43.0	<0.015	<0.015	320	550	25	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des fontes à graphites sphéroïdales ou hautement sollicités.
- APPLICATIONS: Carter moteur, turbine à gaz.

ALLIAGES D'ALUMINIUM

LES + DE LA GAMME : une expérience historique dans le tréfilage des aluminiums, une excellente propreté du fil, un parfait dévidage, une gamme adaptée aux différentes exigences dans la construction navale, ferroviaire dans le secteur du nucléaire, agroalimentaire, aéronautique et aérospatial...

- Tréfilage à partir du 0,3 mm, conditionnements et identifications personnalisées (frappe, drapeautage, marquage),
- Possibilité de travail à façon.

DEMANDEZ NOTRE LEAFLET: «TRANSFORMATION DES FILS MÉTALLIQUES»

SOUDAGE DES ALLIAGES ALUMINIUMS

MÉTAUX DE BASE	1XXX	2219	зххх	4XXX	5XXX Mg < 3%	5XXX Mg > 3%	6XXX	7XXX
7XXX	a : ALS5 b : ALG5	a : ALS12	a : ALS5 b : ALG5	a : ALS5 b : ALG4M	a : ALS5 b : ALG4M	a : ALG5 b : ALG4M	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG4M c : ALG4M
6XXX	a : ALS5 b : ALG5	a : ALS5 b : ALG5	a : ALS5 b : ALG5	a : ALS5 b : ALG5	a : ALS5 b : ALG5	a : ALS5 b : ALG5	a : ALS5 b : ALG5	
5XXX Mg > 3 %	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG4M c : ALG5	a : ALG5 b : ALG5 c : ALG4M		
5XXX Mg < 3%	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG5 c : ALG5	a : ALG5 b : ALG5 c : ALG5	a : ALG3 b : ALG5 c : ALG5			AIDE
4XXX	a : AL99.7 b : AL99.7 c : AL99.7	a : AL99.7 b : AL99.7 c : AL99.7	a : ALS5 b : ALG5	a : ALS12 b : ALS5 c : ALS5				AU CHOIX
ЗХХХ	a : ALS5 b : AL99.7	a : ALS5 b : ALG5	a : ALS5 b : ALG5		INDIC	CATION DU CI	- HOLY DE L'AP	PORT
		a : ALC6			_	: Facilité opérat		1 0111

- b : Meilleur propriété mécanique
- c : Résistance à la corrosion

SELECTARC AL99.7

2219

a: ALS12

TIG MIG

Classi	fication		Anal	yse chim	ique typ	e (%)		Caractéristiq	ues mécaniques du	métal déposé
AWS A5.10	ISO 18273	Si	Mn	Cu	Fe	Zn	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER1070	S AI 1070 (AI99.7)	0.03	0.01	0.001	0.13	0.01	Base	70	100	30

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des aluminiums purs.
- APPLICATIONS: Industrie alimentaire, chaudronnerie, couverture, industrie chimique.

b: ALC6

c: ALC6

☐ SELECTARC ALG3

Classi	fication			Analy	se chim	ique typ	e (%)			Caractéristique	es mécaniques d	u métal déposé
AWS A5.10	ISO 18273	Si	Mn	Cu	Ti	Fe	Zn	Mg	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER5754	S AI 5754 (AIMg3)	0.05	0.15	0.002	0.08	0.13	0.01	3.1	Base	120	250	22

- PROPRIÉTÉ: Métal d'apport Al-Mg utilisé pour le soudage des alliages d'aluminium type AlMg1, AlMg3, 5005, 3303, 3004.
- APPLICATIONS: Construction navale.

ALLIAGES D'ALUMINIUM

■ SELECTARC ALG5

TIG MIG

Classif	ication			An	alyse cl	himiqu	e type	(%)			Caractéristique	es mécaniques di	u métal déposé
AWS A5.10	ISO 18273	Si	Mn	Cr	Cu	Ti	Fe	Zn	Mg	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER5356	S AI 5356 (AIMg5Cr (A))	0.05	0.15	0.1	0.002	0.13	0.13	0.01	4.8	Base	120	280	30

- PROPRIÉTÉ: Métal d'apport Al-Mg utilisé pour le soudage des alliages d'aluminium type AlMg5, 5056, 5083, 5454, 6005 A.
- APPLICATIONS: Construction navale et ferroviaire, benne et remorque.

☐ SELECTARC ALG4M

TIG MIG

Classit	fication			Ana	alyse c	himiqu	e type	(%)			Caractéristique	es mécaniques di	u métal déposé
AWS A5.10	ISO 18273	Si	Mn	Cr	Cu	Ti	Fe	Zn	Mg	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER5183	S AI 5183 (AIMg4.5Mn0.7)	0.1	0.7	0.1	0.02	0.10	0.15	0.02	4.8	Base	125	275	30

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages d'aluminium de compositions similaires type 5083, 5086, 5454, 7020. La présence de manganèse augmente ses caractéristiques mécaniques par rapport au AIMg5.
- APPLICATIONS: Construction navale et ferroviaire, automobile.

☐ SELECTARC ALG5M

TIG MIG

Classif	fication			Ana	alyse c	himiqu	e type	(%)			Caractéristique	es mécaniques d	u métal déposé
AWS A5.10	ISO 18273	Si Mn Cr Cu Ti Fe Zn Mg Al						Rp0.2 (MPa)	Rm (MPa)	A5 (%)			
ER5556	S AI 5556A (AIMg5Mn)	0.2	0.7	0.1	0.01	0.1	0.4	0.02	5.2	Base	145	295	25

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages d'aluminium de compositions similaires type AG5MC. Haute caractéristique mécanique.
- APPLICATIONS: Armement, chaudronnerie...

☐ SELECTARC ALG4Z2

TIG MIG

Classif	ication			Ana	alyse cl	himiqu	e type	(%)			Caractéristiques mécaniques du métal déposé		
AWS A5.10	ISO 18273	Si	Mn	Cr	Cu	Ti	Fe	Zn	Mg	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
-	S Al Z (AlMg4Zn2)	0.05	0.4	0.09	0.003	0.1	0.1	2.0	4.0	Base	-	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages d'aluminium type AZ5G.
- APPLICATIONS: Industrie nucléaire, armement, aérospatiale.

☐ SELECTARC ALC6

TIG MIG

	Classification				Analy	se chim	ique typ	oe (%)		Caractéristiques mécaniques du métal déposé			
AWS A5.10	ISO 18273	AMS	Si	Mn	Cu	Ti	Fe	Zr	٧	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER2319	S Al 2319 (AlCu6MnZrTi)	4191	0.2	0.3	6.5	0.16	0.1	0.12	0.08	Base	-	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages d'aluminium type 2319, 2219, 2693, 2036. Travail à température jusqu'à 300 °C et en cryogénie.
- APPLICATIONS: Industrie nucléaire, armement, aérospatiale.

☐ SELECTARC ALS5

TIG MIG

	Classification				Analyse	chimique	type (%		Caractéristiques mécaniques du métal déposé			
AWS A5.10	ISO 18273	AMS	Si	Mn	Cu	Ti	Fe	Zn	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER4043	S AI 4043 (AISi5)	4190	5.0	0.03	0.001	0.006	0.15	0.003	Base	80	120	20

- PROPRIÉTÉ: Métal d'apport AI 5 % Si, utilisé pour le soudage des alliages d'aluminium type 6060, 6061, 6063, 6070, 6071, 6351.
- APPLICATIONS: Industrie nucléaire, armement, aérospatiale, réparation des pièces de fonderie.

☐ SELECTARC ALS7

TIG MIG

	Classification				Analyse (chimique	type (%))		Caractéristiques mécaniques du métal déposé			
AWS A5.10	ISO 18273	AMS	Si Mn Cu Ti Fe Mg Al						Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
R-357.0	S Al 4011 (AlSi7Mg0.5Ti)	4246	7.0	0.01	0.001	0.1	0.1	0.5	Base	85	130	19	

- PROPRIÉTÉ: Métal d'apport Al 7 % Si utilisé pour le soudage des alliages d'aluminium type AS7, 6060, 6061, 6063, 6070, 6071, 6351.
- APPLICATIONS: Industrie nucléaire, armement, aérospatiale, réparation des pièces de fonderie.

☐ SELECTARC ALS12

	Classification				Analyse	chimique	e type (%		Caractéristiques mécaniques du métal déposé			
AWS A5.10	ISO 18273	AMS	Si	Mn	Cu	Fe	Zn	Mg	Al	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ER4047	S AI 4047 (AISi12)	4185	12.0	0.01	0.007	0.2	0.03	0.02	Base	80	140	20

- PROPRIÉTÉ: Métal d'apport Al 12 % Si utilisé pour le soudage des alliages d'aluminium mal définis. Composition proche de l'eutectique (570-585°C) lui apportant un comportement proche d'un fil de brasage (mouillabilité, fluidité).
- APPLICATIONS: Industrie nucléaire, armement, aérospatiale, maintenance agricole, fonderie.

ALLIAGES DE MAGNÉSIUM

LES + DE LA GAMME : une gamme de niche très technique pour des marchés de pointe : automobile et aéronautique.

Des ingénieurs métallurgistes répondent à toutes questions techniques.

■ SELECTARC AZ92A

	Classification				Analy	se chim	ique typ	e (%)			Caractéristiques mécaniques du métal déposé			
AWS A5.19	AFNOR	AMS	Al	Si	Mn	Cu	Fe	Zn	Ве	Mg	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
ERAZ92A	Mg Al 9	4395	9.0	0.01	0.3	0.001	0.002	1.8	0.0005	Base	-	-	-	

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage de la plupart des alliages de magnésium.
- APPLICATIONS: Soudage de l'AM100A, aérospatiale.

	S			-			- 1-			
		121	 ю	WAY	1 = 4			E	/ A V	

	Classification				Analy	se chim	ique typ	e (%)			Caractéristiques mécaniques du métal déposé			
AWS A5.19	AFNOR	AMS	Si	Mn	Cu					Mg	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
EREZ33A	Mg Zn 2	4396	<0.01	<0.03	<0.01	0.6	0.002	2.5	3.2	Base	-	-	-	

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de magnésium travaillant à température élevée.
- APPLICATIONS: Sport mécanique.

ALLIAGES CUIVREUX

LES + DE LA GAMME : gamme permettant de souder les cuivres, bronzes, laitons, cupro-aluminiums. Les cuivreux en fils complètent la gamme très exhaustive des brasures cuivre.

■ Ces alliages sont particulièrement indiqués pour les assemblages hétérogènes ou le beurrage.

SELECTARC CUS

	_	
TIO	B.4	.,

Classif	ication		Analyse	chimique ·	type (%)		Caractéristiques mécaniques du métal déposé			
AWS A5.7	ISO 24373	Si	Mn	Sn	Р	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
ERCu	S Cu 1898 (CuSn1)	0.2	0.4	0.8	0.01	Base	50	190	35	

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage du cuivre désoxydulé et des alliages de cuivre.
- APPLICATIONS: Conducteur électrique.

■ SELECTARC CUS6

TIG	MIG

ı	Classif	ication	Į.	Analyse chim	ique type (%		Caractéristiques mécaniques du métal déposé				
	AWS A5.7	ISO 24373	Sn	Р	Pb	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)		
	ERCuSn-A	S Cu 5180A (CuSn6P)	6.0	0.2	< 0.01	Base	150	300	20		

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de cuivre et cuivre-étain (bronze) type : CuSn2, CuSn6Zn, CuSn8, G-CuSN10.
- APPLICATIONS: Réparation des bronzes et laitons.

■ SELECTARC CUS8

TIG MIG

Classif	fication	Analy	/se chimique typ	e (%)	Caractéristiques mécaniques du métal déposé			
AWS A5.7	ISO 24373	Sn	Р	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
ERCuSn-C	S Cu 5210 (CuSn8P)	8.0	0.1	Base	-	260	20	

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de composition similaire et des tôles revêtues.
- APPLICATIONS: Brasage MIG acier galvanisés, rechargement des surfaces de frottement.

■ SELECTARC CUS13

Classif	ication	Analy	yse chimique typ	e (%)	Caractéristiques mécaniques du métal déposé			
AWS A5.7	ISO 24373	Sn	Р	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
-	S Cu 5410 (CuSn12P)	13.0	0.2	Base	-	320	5	

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de cuivre-étain. Grande résistance à l'usure.
- APPLICATIONS: Moulage cuivre-étain, rechargement des surfaces de frottement.

■ SELECTARC CUSIL

TIG MIG

Classit	fication			Analyse	chimique	type (%)	Caractéristiques mécaniques du métal déposé				
AWS A5.7	ISO 24373	Sn	Mn	Si	Zn	Al	Pb	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERCuSi-A	~S Cu 6560 (CuSi3Mn1)	0.8	1.0	3.0	<0.1	<0.01	<0.02	Base	150	350	42

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages Cu-Si, Cu-Mn entre eux ou avec des aciers courants et des tôles revêtues et galvanisées.
- APPLICATIONS: Automobile et autres industries d'assemblage.

SELECTARC CUAG

Classif	Analyse chimique type (%)					Caractéristiques mécaniques du métal déposé				
AWS A5.7	ISO 24373	Ag	Mn	Р	Pb	Cu	Rp0.2 (MPa)	Rm (MPa)	Conductivité électrique (Sxm/mm²)	
~ERCu	S Cu 1897 (CuAg1)	1.0	0.06	0.03	0.01	Base	60	190	35	40-46

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage du cuivre désoxydulé et des alliages de cuivre dans le cas où une bonne conductivité électrique est nécessaire.
- APPLICATIONS: Conducteur électrique.

SELECTARC CUAS

Classit	fication			Analy	se chim	ique typ	oe (%)	Caractéristiques mécaniques du métal déposé				
AWS A5.7	ISO 24373	Fe	Mn	Si	Ni	Al	Pb	Zn	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERCuAl-A1	S Cu 6100 (CuAl7)	0.05	0.1	0.03	0.2	8.1	<0.02	<0.1	Base	180	400	40

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de cupro-aluminium, type bronze d'aluminium (jusqu'à 10 % d'Al) mais aussi pour les assemblages hétérogènes cuivre/acier et le soudo-brasage des aciers galvanisés.
- APPLICATIONS: Construction navale, industrie chimique.

■ SELECTARC CUASNI

Classi	ification		Ana	ılyse chim	ique type	(%)	Caractéristiques mécaniques du métal déposé			
AWS A5.7	ISO 24373	Fe Al Mn Ni Zn Cu					Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
-	S Cu 6327 (CuAl8Ni2Fe2Mn2)	1.4	8.5	1.8	2.3	0.017	Base	330	650	27

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de cupro-aluminium de composition similaire. Possède de meilleures caractéristiques mécaniques que le CUA9.
- APPLICATIONS: Soudage et réparation des pompes et canalisations pour eau de mer, rechargement des surfaces de frottement, constructions navales (conforme à la spécification Indret n°108).

SELECTARC CUA9

Classif	ication	Analyse chimique type (%) Caractéristiques mécaniques du méta						métal déposé			
AWS A5.7	ISO 24373	Fe	Si	Ni	Al	Pb	Zn	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERCuAl-A2	S Cu 6180 (CuAl10Fe)	1.2	<0.1	0.007	9.8	<0.02	<0.02	Base	-	500	35

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de cupro-aluminium de composition similaire. Possède une dureté supérieure au CUA8.
- APPLICATIONS: Rechargement des aciers ferritiques et perlitiques, des aciers plaqués à l'aluminium, des fontes pour machines-outils et constructions navales.

■ SELECTARC CUA9NI

Clas	sification		Analyse	chimique	type (%)		Caractéristiques mécaniques du métal déposé			
AWS A5.7	ISO 24373	Fe	Mn	Al	Ni	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	
ERCuNiAl	S Cu 6328 (CuAl9Ni5Fe3Mn2)	3.2	1.3	9.0	4.5	Base	400	700	15	

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des alliages de bronze d'aluminium de composition similaire. Meilleure résistance à l'usure que CUA8NI.
- APPLICATIONS: Accessoire de navire, hélices de navire, vannes de centrales électriques, pompes de récupération du pétrole, boîtiers d'engrenage d'hélices.

ALLIAGES CUIVREUX

■ SELECTARC CUMN13

TIG MIG

	Classification			Analyse	chimique	type (%))		Caractéristique	es mécaniques du	ı métal déposé
AWS A5.7	ISO 24373	Fe	Mn	Si	Ni	Al	Zn	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERCuMnNiAl	S Cu 6338 (CuMn13Al8Fe3Ni2)	2.5	12.0	0.03	2.0	7.5	<0.15	Base	400	650	20

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des cupro-alu type CuAl10Fe3Mn2, CuAl9Mn2, pour le rechargement d'acier ou fonte demandant une bonne résistance à la cavitation. Bonne tenue à la corrosion marine.
- APPLICATIONS: Construction navale, industrie chimique, rechargement des surfaces de frottement, assemblages exposés à l'eau de mer. Réparation hétérogène.

■ SELECTARC CUNI10

TIG MIG

Classit	fication			Analy	se chim	ique typ	oe (%)			Caractéristique	s mécaniques d	u métal déposé
AWS A5.7	ISO 24373	Fe	Mn	Si	Ni	Ti	Р	Pb	Cu	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
-	S Cu 7061 (CuNi10)	1.0	0.8	<0.2	10.5	0.4	<0.02	<0.02	Base	200	320	15

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des cupro-nickel type 90/10.
- APPLICATIONS: Canalisations présentes dans les bateaux, plates-formes pétrolières, centrales hydroélectriques en mer, échangeurs en pétrochimie et centrales électriques.

■ SELECTARC CUNI30

Classi	fication			Analy	se chim	ique typ	oe (%)			Caractéristique	s mécaniques di	ı métal déposé
AWS A5.7	ISO 24373	Fe	Fe Mn Si Ni Ti P Pb Cu							Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERCuNi	S Cu 7158 (CuNi30Mn1FeTi)	0.6	0.7	<0.2	30.0	0.4	<0.02	<0.02	Base	240	400	32

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage des cupro-nickel type 70/30, 80/20.
- APPLICATIONS: Off-shore, installation de désalinisation, industrie navale et chimique.

ALLIAGES DE TITANE

LES + DE LA GAMME : une excellente gamme de fils spéciaux très technique et d'une très bonne qualité répondant aux besoins des programmes les plus pointus des secteurs aéronautique et aérospatiale. Qualité des produits constante sur toutes les fabrications, produits disponibles en différents formes, diamètres et volumes de vente, conditionnements spécifiques, contact direct avec un conseiller technique.

SELEC	CTARC T40										TIG MIG
	Classification			Д	nalyse chim	nique type (%	o)		Caractéristique	s mécaniques d	u métal déposé
AWS A5.16	ISO 24034	AMS	С	N	Н	0	Fe	Ti	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERTi-2	Ti 0120 (Ti 99,6)	4951	< 0.03	<0.015	<0.008	0.08-0.16	<0.12	Base	290	390-540	20

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage du titane pur de type Grade 2.
- APPLICATIONS: Industrie aéronautique, marine, chimie.

SELEC	CTARC TPDO),2									TIG MIG
Clas	sification			Analys	e chimique t	/pe (%)			Caractéristique	es mécaniques d	u métal déposé
AWS A5.16	ISO 24034	С	N	Н	0	Fe	Pd	Ti	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERTi-7	Ti 2401 (TiPd0,2A)	< 0.03	<0.015	<0.008	0.08-0.16	<0.12	0.12-0.25	Base	-	-	-

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage du titane pur. L'ajout de palladium augmente la résistance à la corrosion en milieu acide réducteur.
- APPLICATIONS: Échangeurs de chaleur.

	CTARC TA6V	4												TIG MIG
	Classification					Analyse ch	imique t	ype (%)				Caractéristique	s mécaniques d	u métal déposé
AWS A5.16	ISO 24034	AMS	С	N	Н	0	Fe	Al	V	Y	Ti	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERTi-5	Ti 6402 (TiAl6V4B)	4954	< 0.05	<0.03	<0.005	0.12-0.20	<0.22	6.0	4.0	<0.005	Base	900	960-1270	8

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'alliage de titane-aluminium. L'alliage présente des caractéristiques mécaniques élevées.
- APPLICATIONS: Industrie aéronautique (aube de compresseur), industrie chimique.

	CTARC TA6V	/4 ELI												TIG MIG
	Classification					Analyse ch	imique t	ype (%)				Caractéristique	s mécaniques di	u métal déposé
AWS A5.16	ISO 24034	AMS	С	N	Н	0	Fe	Al	٧	Υ	Ti	Rp0.2 (MPa)	Rm (MPa)	A5 (%)
ERTi-23	Ti 6408 (TiAl6V4A)	4956	< 0.05	<0.03	<0.005	0.12-0.20	<0.22	6.0	4.0	<0.005	Base	900	960-1270	8

- PROPRIÉTÉ: Métal d'apport utilisé pour le soudage d'alliage de titane-aluminium. La diminution du nombre d'éléments interstitiels permet une meilleure soudabilité et une dureté plus élevée.
- APPLICATIONS: Industrie chimique, marine, aéronautique, implants chirurgicaux.

LES + DE LA GAMME: une gamme d'une qualité et d'une technicité extrême répondant aux besoins les plus pointus des secteurs de l'énergie, de l'aéronautique et de l'aérospatiale. Ajoutées à sa propreté et à son identification, ses caractéristiques en font l'une des gammes les plus remarquables en plus de sa qualité pérenne sur toutes les fabrications, de sa disponibilité en différents diamètres, formes, volumes de vente et conditionnements spécifiques. Un conseiller technique se tient à votre disposition.

SELECTARC CO1

TIG

	Classific	ation				Analys	e chim	ique ty	pe (%)				Caractéristique	es mécaniques d	u métal déposé
AWS A5.21	EN 14700	DIN 8555	С	Si	Mn	Cr	Ni	W	Fe	Р	S	Co		Dureté (HRC)	
ERCoCr-C	S Co3	WSG-20-G0-55-CSTZ	2.4	1.2	0.2	31.0	2.2	12.5	2.5	<0.02	<0.03	Base	20°C→55	400°C → 47	600°C → 41

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 1 utilisé pour le rechargement de pièces soumises à usures combinées ou non : abrasion, contact métal-métal, corrosion de 500 °C à 800 °C.
- APPLICATIONS: Lames de cisailles à chaud, sièges de vannes, sièges et portées de soupapes.

SELECTARC CO6

TIG

	Classific	ation				Ana	alyse c	himiq	ue typ	e (%)				Caractéristique	s mécaniques d	u métal déposé
AWS A5.21	EN 14700	DIN 8555	С	Si	Mn	Cr	Ni	W	Мо	Fe	Р	S	Co		Dureté (HRC)	
ERCoCr-A	S Co2	WSG-20-G0-40-CTZ	1.2	1.3	0.1	29.5	2.5	4.6	0.3	2.4	<0.02	<0.03	Base	20°C → 42	400°C → 34	600°C→≤20

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 6 utilisé pour le rechargement de pièces soumises à usures combinées ou non : abrasion et pression, corrosion de 500°C à 800°C. Conserve sa dureté jusqu'à 600°C.
- APPLICATIONS: Lames de cisailles à chaud, sièges de vannes, sièges et portées de soupapes.

■ SELECTARC CO12

TIG

	Classific	ation				Ana	alyse c	himiq	ue typ	e (%)				Caractéristique	es mécaniques d	u métal déposé
AWS A5.21	EN 14700	DIN 8555	С	Si	Mn	Cr	Ni	W	Мо	Fe	Р	S	Co		Dureté (HRC)	
ERCoCr-B	S Co2	WSG-20-G0-50-CSTZ	1.4	1.4	0.1	30.5	2.4	8.4	0.2	2.0	< 0.02	<0.03	Base	20°C → 49	400°C → 34	600°C → 37

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 12 utilisé pour le rechargement de pièces soumises à usures combinées ou non : abrasion à chaud, contact métal-métal, corrosion de 500°C. à 800°C. Conserve sa dureté jusqu'à 650°C.
- APPLICATIONS: Outils de coupage, de malaxage et de déchiquetage, vis d'extrusion (industrie plastique), papeterie, outils travaillant avec des chocs thermiques.

SELECTARC CO21

TIG

	Classific	ation				Ana	alyse d	himiq	ue typ	e (%)				Caractéristique	es mécaniques du	u métal déposé
AWS A5.21	EN 14700	DIN 8555	C Si Mn Cr Ni W Mo Fe P S Co									Co		Dureté (HRC)		
ERCoCr-E	S Co1	WSG-20-G0-300-CKTZ	0.25	0.6	0.3	27.8	2.4	0.01	5.4	1.4	<0.02	<0.03	Base	20°C→32	400°C→≤20	600°C→20

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 21 utilisé pour le rechargement de pièces soumises à usures combinées ou non : abrasion, choc, pression à haute température en présence d'atmosphère sulfureuse.
- APPLICATIONS: Portées et sièges de soupape, matrices de forgeage à chaud, turbines à gaz, grandes surfaces de rechargement.

■ SELECTARC CO25

TIG MIG

	Classific	ation			Ana	alyse cl	himiqu	e type	(%)			Caractéristiques mécaniques du métal déposé
AWS A5.21	EN 14700	DIN 8555	С	Si	Mn	Cr	Ni	W	Mo	Fe	Co	Dureté (HRC)
-	S Co1	WSG-20-GZ-250-CKTZ	0.15	0.9	0.7	21.0	9.8	15.0	0.03	3.0	Base	~230 HRC

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 25 utilisé pour le rechargement de pièces soumises à usures combinées ou non. Très bon comportement aux chocs thermiques et mécaniques. Apte au polissage.
- APPLICATIONS: Portées et sièges de soupape, matrices de forgeage à chaud, turbines à gaz, outils de forgeage.

GAMME AÉRONAUTIQUE

■ SELECTARC FICO25

TIG MIG

	Classification					Analys	e chim	ique ty	pe (%)				Caractéristiques mécaniques du métal déposé
AFNOR	EN 3887	AMS	С	C Si Mn Cr Ni W Fe P S Co							Dureté (HRC)		
KC 20 WNx	CoCr20W15Ni	5796	0.1	0.8	1.5	20.0	10.0	15.0	2.5	0.01	0.006	Base	~230 HB

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 25 utilisé pour le rechargement de pièces type Alloy 25, AMS 5537, CoCr20W15Ni. Résistant aux usures combinées ou non : abrasion, contact métal-métal à chaud jusqu'à 1000°C même en présence d'atmosphère sulfureuse.
- APPLICATIONS: Industrie aéronautique, turbines à gaz (zones soumises à l'érosion par gaz chaud), rechargement d'outils devant travailler à chaud (outils de forgeage).

SELECTARC FICO31

TIG MIG

	Classification					Analys	e chim	ique ty	rpe (%)				Caractéristiques mécaniques du métal déposé
AFNOR	EN 4327	AMS	С	C Si Mn Cr Ni W Fe P S Co								Dureté (HRC)	
KC 26 NW	CoCr126Ni11W8	5789	0.5	0.8	0.8	25.0	10.5	7.5	1.0	0.01	0.006	Base	~230 HB

- PROPRIÉTÉ: Métal d'apport base cobalt type Stellite® Grade 31 utilisé pour le rechargement de pièces. Résistant à l'oxydation jusqu'à 1150°C et au fluage. Excellente résistance aux chocs mécaniques et thermiques.
- APPLICATIONS: Turbine à gaz (zones soumises à l'érosion par gaz chaud), industrie aéronautique, rechargement d'outils devant travailler à chaud.

■ SELECTARC FICO188

TIG MIG

	Classification				An	alyse cl	himiqu	e type	(%)			Caractéristiques mécaniques du métal déposé
AFNOR	EN 3888	AMS	С	Si	Mn	Cr	Ni	W	Fe	La	Co	Dureté (HRC)
KCN 22 W	CoCr22Ni22W15	5801	0.1	0.3	0.8	22.0	23.0	14.0	<3.0	0.06	Base	-

- PROPRIÉTÉ: Métal d'apport pour le soudage d'alliage de cobalt type Alloy 188, AMS 5608 ou encore CoCr22NiW. Résistant à l'oxydation jusqu'à 1150°C et au fluage.
- APPLICATIONS: Assemblage et rechargement de parties de réacteurs.

■ SELECTARC FICO414

TIG MIG

		Classification				An	alyse c	himiqu	e type	(%)			Caractéristiques mécaniques du métal déposé
AF	NOR	EN	AMS	С	C Si Mn Cr Ni W Fe B C					Fe	В	Co	Dureté (HRC)
KC 2	29 NW	-	-	0.12	0.8	0.9	29.0	10.2	7.0	0.1	0.002	Base	-

- PROPRIÉTÉ: Métal d'apport base cobalt utilisé pour le rechargement de pièces de contact où la lubrification est difficile (faible taux de friction) même à températures élevées.
- APPLICATIONS: Industrie aéronautique (GE B50A823).

■ SELECTARC FICO694

TIG MIG

	Classification					Analys	e chim	nique ty	/pe (%))			Caractéristiques mécaniques du métal déposé
AFNOR	EN 4326	AMS	С	C Si Mn Cr Ni W Fe B V Co								Dureté (HRC)	
KC 28 WN	CoCr28W20Ni5V1	-	0.85	0.6	0.3	28.0	5.8	20.0	<3.0	<0.05	1.0	Base	47-54

- PROPRIÉTÉ: Métal d'apport base cobalt utilisé pour le rechargement de pièces de contact où la lubrification est difficile (faible taux de friction) même à températures élevées.
- APPLICATIONS: Rechargement en dur de pâtes de réacteurs ou de turbines à gaz (GE B50A842, GE B50TF55).

■ SELECTARC FICO918

TIG MIG

	Classification					Analys	e chim	ique ty	pe (%)				Caractéristiques mécaniques du métal déposé
AFNOR	EN	AMS	С	Si	Mn	Cr	Ni	Ta	Fe	Al	Cu	Co	Dureté (HRC)
KC 20 NTa	-	5814	0.07	0.1	0.1	20.0	20.0	7.5	0.05	0.07	0.06	Base	-

- PROPRIÉTÉ: Métal d'apport base cobalt utilisé pour le rechargement de pièces de contact où la lubrification est difficile (faible taux de friction) même à températures élevées.
- APPLICATIONS: Industrie aéronautique (GE B50A824, pales de réacteurs), réparation de fonderie, réparation de portées de valves.

■ SELECTARC FICOT800

TIG MIG

	Classification					Analys	e chim	ique ty	pe (%)				Caractéristiques mécaniques du métal déposé
AFNOR	EN	AMS	С	C Si Cr Mo Ni Fe N P S Co							Dureté (HRC)		
KD 28 CS	-	-	0.01	3.5	18.0	29.0	1.0	1.0	0.01	<0.01	<0.01	Base	-

- PROPRIÉTÉ: Métal d'apport base cobalt utilisé pour le rechargement de pièces de contact où la lubrification est difficile (faible taux de friction) même à températures élevées.
- APPLICATIONS: Industrie aéronautique (GE B50TF193, pales de réacteurs), pales de turbines à gaz.

LES + DE LA GAMME : une gamme de fils de haute qualité parfaitement maîtrisée depuis des décennies, conseil technique sur tous les secteurs du rechargement, chimie et pureté contrôlée, exclusivité du tréfilage des aciers spéciaux Aubert & Duval.

RECHARGEMENT AUBERT & DUVAL

SELECTARC 819 BS

TIG MIG

Classif	ication				Analyse (chimique	type (%))			Caractéristiques mécaniques du métal déposé
EN 14700	AIR 9117	С	Si	Mn	Cr	Ni	Мо	Dureté (HRC)			
S Fe3	-	0.35	0.3	0.4	1.7	3.8	0.3	<0.015	< 0.010	Base	~48

- PROPRIÉTÉ: Métal d'apport type 36NiCrMo16 (Z35NCD16) pour le rechargement homogène et celui des aciers de nuances voisines type 45NiCr-Mo18, 60NiCrMo11... Produit d'une grande pureté, dépôt exempt de porosité.
- APPLICATIONS: Outils de travail à froid, matrices de forge et d'estampage, moules pour matières plastiques.

SELECTARC BMS

TIG MIG

Classif	ication			Ana	llyse chim	ique type	(%)			Caractéri	stiques méc	aniques du n	nétal déposé
EN 4332 AIR 9117 C Si Mn Cr Mo P S								S	Fe	Re (MPa)	Rm (MPa)	A5 (%)	Dureté (HRC)
8 CrMnMo12-4-9	8CD12	0.06	0.7	1.1	2.7	1.0	<0.015	<0.015	Base	440*	570	24	~36

- PROPRIÉTÉ: Métal d'apport type 8CrMo12 utilisé pour le rechargement des aciers faiblement alliés type 30CrMoV12, 55NiCrMoV7, 55CrNiMo4.
- APPLICATIONS: Moules pour matières plastiques.

■ SELECTARC MV5S

TIG MIG

Cl	ssification			Analyse chim	ique type (%))		Caractéristiques mécaniques du métal déposé
EN 14700	AIR 9117	С	Cr	Mo	V	Dureté (HRC)		
S Fe4	-	0.5	5.0	1.3	0.4	1.3	Base	60

- PROPRIÉTÉ: Métal d'apport type X50CrMoW5 pour le rechargement des aciers faiblement alliés de nuances proches. Résistant à température jusqu'à 550°C ainsi qu'aux chocs et à l'abrasion.
- APPLICATIONS: Moules pour injection plastique, moules et outillage pour travail à froid et à chaud.

SELECTARC MARVAL 18S

TIG MIG

Classif	ication				Caractéristiques mécaniques du métal déposé						
EN 14700	AIR 9117	С	Si	Mn	Ni	Co	Dureté (HRC)				
S Fe5	Z2NKD18	< 0.01	<0.1	<0.1	18.0	8.5	5.0	0.5	0.1	Base	~35/~50

- PROPRIÉTÉ: Métal d'apport type X2NiCoMoTi18-8 (acier Maraging, acier à durcissement structural) utilisé pour le rechargement des aciers faiblement alliés ou des aciers type Maraging (X2NiCoMo18-9-5, Maraging 200).
- APPLICATIONS: Industrie aéronautique (pièce de structure, crochet d'appontage, corps de propulseurs de missile).

■ SELECTARC SMV3S

Classit	ication			Analyse	chimique t	type (%)			Caractéristiques mécaniques du métal déposé
EN 14700	AIR 9117	С	Si	Mn	Cr	Dureté (HRC)			
S Fe3	-	0.38	0.9	0.3	5.0	1.3	0.5	Base	~58

- PROPRIÉTÉ: Métal d'apport type X38CrMoV5 pour le rechargement homogène et des nuances voisines type X32MoCrV2S, X40CrMoV12... Grande résistance à l'usure, à l'oxydation à chaud et aux chocs thermiques, il présente une bonne aptitude au polissage.
- APPLICATIONS: Moules pour alliages légers et verrerie, matrices et inserts pour estampage.
- * Après traitement thermique, voir fiche technique pour plus de détails.

RECHARGEMENT - MAINTENANCE ET RÉPARATION

■ SELECTARC SCVS

TIG MIG

Classif	ication				Analyse (chimique	Caractéristiques mécaniques du métal déposé				
EN 4334	AIR 9117	С	Si	Mn	Cr	Мо	٧	Р	Dureté (HRC)		
15CrMnMoV5-4-9-3	15 CDV 6	0.14	0.15	1.0	1.4	0.9	0.25	<0.02	<0.02	Base	42

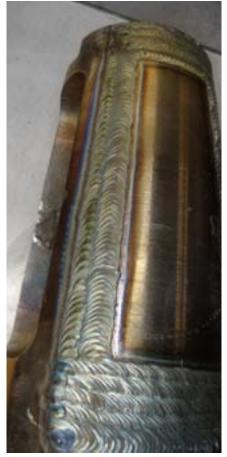
- PROPRIÉTÉ: Métal d'apport type 15CrMoV6 utilisé pour le rechargement homogène et celui des aciers faiblement alliés de nuances voisines.
- APPLICATIONS: Rechargement dur sur ailettes, aciers à outils. Existe nu ou cuivré.

■ SELECTARC HB48HT

TIG MIG

Classification				Analyse (chimique	e type (%)			Caractéristiques mécaniques du métal déposé
EN 14700	С	Si	Mn	Cr	Mo	Ti	Dureté (HRC)			
S Fe8	0.25	0.3	0.6	5.0	3.6	0.6	<0.015	<0.010	Base	42-47

- PROPRIÉTÉ: Métal d'apport déposant un acier très résistant aux chocs et à l'abrasion métallique pour le rechargement dur d'aciers travaillant à chaud. Ce fil est utilisé pour la réparation et le rechargement de pièces de machines soumises à l'action combinée de chocs, usures, compression jusqu'à des températures de 550 °C.
- APPLICATIONS: Vannes, soupapes, outils de coupe à chaud, pistons d'extrusion, matrices, enclumes...)


■ SELECTARC HB56HT

Classification				Analyse (chimique	Caractéristiques mécaniques du métal déposé				
EN 14700	С	Si	Mn	Cr	Mo	Ti	Dureté (HRC)			
S Fe6	0.35	0.4	1.1	7.0	2.2	0.3	<0.015	<0.010	Base	52-57

- PROPRIÉTÉ: Métal d'apport déposant un acier très résistant aux chocs et à l'abrasion métallique pour le rechargement dur d'aciers travaillant à chaud. Ce fil est utilisé pour la réparation et le rechargement de pièces de machines soumises à l'action combinée de chocs, usures, compression jusqu'à des températures de 550 °C.
- APPLICATIONS: Vannes, soupapes, outils de coupe à chaud, pistons d'extrusion, matrices, enclumes...)

RECHARGEMENT - MAINTENANCE ET RÉPARATION

■ SELECTARC HB25

TIG MIG

Classification	Analyse chimique type (%)	Caractéristiques mécaniques du métal déposé
-	Fe	Dureté (HB)
-	Base	225-275

- PROPRIÉTÉ: Métal d'apport pour le rechargement d'aciers faiblement alliés ou fontes.
- APPLICATIONS: Pièces machines : glissières, roues, jantes, rails, poulies. Peut être utilisé comme sous couche dans le cas d'un rechargement de dureté plus élevée.

■ SELECTARC HB35

TIG MIG

Classification	Analyse chimique type (%)	Caractéristiques mécaniques du métal déposé
-	Fe	Dureté (HB)
-	Base	330-370

- PROPRIÉTÉ: Métal d'apport pour le rechargement d'aciers de construction ou moulés.
- **APPLICATIONS:** Pièces machines : poulies, guidage, surface de roulement.

SELECTARC HB50

TIG MIG

Classification	Analyse chimique type (%)	Caractéristiques mécaniques du métal déposé
•	Fe	Dureté (HRC)
-	Base	~50

- PROPRIÉTÉ: Métal d'apport pour le rechargement d'aciers de construction ou à haut manganèse.
- APPLICATIONS: Chenilles, pièces de forage, mâchoires de serrage, pièces soumises à l'abrasion minérale.

■ SELECTARC HB60

TIG MIG

Classification	Analyse chimique type (%)	Caractéristiques mécaniques du métal déposé
•	Fe	Dureté (HRC)
	Base	~60

- PROPRIÉTÉ: Métal d'apport pour le rechargement d'aciers de construction ou à haut manganèse.
- APPLICATIONS: Pièces de forage, mélangeurs/malaxeurs, engins de travaux publics, pièces soumises à l'abrasion minérale.

■ SELECTARC HBF17

TIG MIG

Classification		Ana	lyse chim	ique type	(%)	Caractéristiques mécaniques du métal déposé	
-	С	Si	Mn	Cr	Mo	Fe	Dureté (HRC)
-	0.4	0.5	0.4	16.5	1.1	Base	~53

- PROPRIÉTÉ: Métal d'apport en acier inoxydable servant au rechargement de nuances fortement alliées type X55Cr14, X160CrMoV12. Résistance à la corrosion et à la chaleur jusqu'à 500°C.
- APPLICATIONS: Outils de découpes (lames, cisailles), matrices d'emboutissage, molettes de fluotournage.

■ SELECTARC HBC62

TIG MIG

ĺ	Classification			Analy	se chim	ique typ	Caractéristiques mécaniques du métal déposé			
	-	С	Si	Mn	Cr	Mo	٧	W	Fe	Dureté (HRC)
	-	1.0	0.4	0.2	3.6	8.5	1.8	1.6	Base	~62

- PROPRIÉTÉ: Métal d'apport pour le rechargement d'aciers à outils travaillant à froid.
- APPLICATIONS: Outils de découpes (lames, cisailles), matrices d'emboutissage, molettes de fluotournage.

■ SELECTARC HCUBE

Classif		Ana	llyse chim	ique type	(%)	Caractéristiques mécaniques du métal déposé		
EN 14700	AFNOR	Ве	Со	Ni	Cr	Fe	Cu	Dureté (HRC)
S Z Cu1	CuBe2	2.0	0.25	0.02	3.6	0.01	Base	-

- PROPRIÉTÉ: Métal d'apport pour le soudage et le rechargement d'alliages de cupro-béryllium. Bonne résistance mécanique et thermique (à chaud et à froid). Alliage amagnétique.
- APPLICATIONS: Électromécanique, connectique, aéronautique, injection plastique.

FILS À FREINER

LES + DE LA GAMME : fils à freiner, prêts à l'emploi, destinés principalement au freinage d'écrous dans l'industrie aéronautique.

■ SELECTARC Z 2 CN 18.10

		Classification		
NFL 23-320/AC	AMS	DMD	EN	Nº Matériel
Z 2 CN 18.10	5697	200-44	-	1.4314.9

• APPLICATIONS: Fil de sécurité destiné principalement au freinage d'écrous dans l'industrie aéronautique lors de maintenance/réparation dans les parties «froides».

SELECTARC Z 6 CNT 18.10

	Classification												
NFL 23-320/VQ	AMS	DMD	EN	Nº Matériel									
Z 6 CNT 18.10	5645	-	EN 3628 / EN 2573	1.4544									

• APPLICATIONS: Fil de sécurité destiné principalement au freinage d'écrous dans l'industrie aéronautique lors de maintenance/réparation dans les parties « froides ».

SELECTARC NC 15 FE

		Classification		
NFL 23-320/TC	AMS	DMD	EN	Nº Matériel
NC 15 Fe	5687	422-44	-	-

• APPLICATIONS: Fil de sécurité destiné principalement au freinage d'écrous dans l'industrie aéronautique lors de maintenance/réparation dans les parties « chaudes ».

TIG ORBITAL

demandez notre catalogue fils "TIG ORBITAL"

LES + DE LA GAMME : pour répondre aux besoins pointus des clients en termes de stabilité et de qualité des alliages : un large choix d'alliages pour de multiples applications (aciers non alliés et faiblement alliés, aciers inoxydables, duplex, super-duplex, alliages de nickel, de titane, d'aluminium et les cuivreux).

- La propreté des fils, indispensable dans ce type d'utilisation est garantie grâce à des procédés de décapage électrochimique et mécanique.
- Le bobinage en spires jointives assure un parfait dévidage du fil.
- Diamètres des fils: disponibles à partir du Ø 0.6 mm au 1.2 mm.
- Les fils d'apport sont disponibles en **conditionnement standard en bobine spécifique** D100 et D200, de 0.5 kg, 1 kg, 1.5 kg, 2 kg et 5 kg, ou en tout type de conditionnement réalisé sur spécification client.
- Demandes spécifiques : RCCM, certificats 3.1 mécanique...

Dénomination		Classif	ication	
Denomination	AV	VS	IS	0
■ SELECTARC F57	A5.18	ER70S-6	636-A	W3Si1
SELECTARC 20/10	A5.9	ER308L	14343-A	W 199L
SELECTARC 20/10M	A5.9	ER316L	14343-A	W 19 12 3 L
SELECTARC D22/09	A5.9	ER2209	14343-A	W 22 9 3 N L
■ SELECTARC ALG5	A5.10	ER5356	18273	S AI 5356
SELECTARC NI82	A5.14	ERNiCr-3	18274	S Ni 6082
SELECTARC NI625	A5.14	ERNiCrMo-3	18274	S Ni 6625
■ SELECTARC T40	A5.16	ERTi-2	24034	Ti 99,6
■ SELECTARC TA6V4	A5.16	ERTi-5	24034	TiAl6V4B

Tous types de nuances peuvent être étudiés sur demande, consultez-nous!

MICRO-LASER

LES + DE LA GAMME : de nombreuses nuances métalliques sont soudables par procédé micro-laser : aciers carbones, aciers inoxydables, base nickel, alliages aluminium, alliages en titane...

■ Ce procédé extrêmement pointu permet d'obtenir des dépôts présentant des caractéristiques identiques ou supérieures à celle d'origine.

Cette méthode de soudage, utilisée dans l'industrie automobile, électronique, aéronautique, médicale, joaillerie... a plusieurs avantages :

- Déposer le minimum de matière sans altérer les caractéristiques du métal,
- Pas de déformations de pièces ni d'élévation de température trop importante,
- Aspect brillant des cordons et aucune trace de chauffe sur les zones périphériques,
- Étanchéité garantie,
- Assemblage d'éléments de faibles dimensions,
- Toutes configurations possibles : bord à bord...

LA GAMME DE PRODUITS D'APPORTS EN MICRO-LASER EST DISPONIBLE EN :

- Baguettes de 1 m conditionnées en étui de 50 m,
- Bobines de 50 m sur D100,
- Diamètre à partir de 0,2 mm.

ACIERS FAIBLEMENT ALLIÉS

Dénomination Classification Analyse chimique type (%)									0,4	0,5	0,6	
Denomination	AWS A5.28	С	Mn	Si	Cr	Mo	Fe	(mm)	(mm)	(mm)	(mm)	
SELECTARC F63	A5-28 ER80SB2	0.11	1.0	0.6	1.1	0.5	Base	Х	Х	Х	х	

ACIERS FAIBLEMENT ALLIÉS : GAMME AÉRONAUTIQUE

Dénomination	Classification				Ana	lyse ch	nimique	e type (%)			0,3	0,4	0,5	0,6
Denomination	AFNOR	С	Mn	Si	Cr	Ni	Mo	S	Р	V	Fe	(mm)	(mm)	(mm)	(mm)
■ SELECTARC SCVS	15 CDV6	<0.15	1.0	<0.2	1.40	-	0.95	<0.020	<0.020	0.25	Base	Х	х	Х	Х
■ SELECTARC F66S	25CD4	< 0.25	0.6	0.25	1.0	<0.3	0.23	<0.020	<0.020	-	Base	Х	X	Х	Х

ACIERS INOXYDABLES

Dánamination	Classification			Anal	yse chim	ique type	e (%)			0,3	0,4	0,5	0,6
Dénomination	AWS A5.9	С	Mn	Si	Cr	Ni	Мо	V	Fe	(mm)	(mm)	(mm)	(mm)
SELECTARC 20/10	ER308 L	< 0.03	1.75	<0.6	20	10	-	-	Base	Х	х	х	-
SELECTARC 29/9	ER312	0.12	1.75	<0.6	30	9.5	-	-	Base	Х	-	-	-
SELECTARC 20/10M	ER316 L	< 0.03	1.75	<0.6	19	13.5	2.5	-	Base	Х	х	х	-
SELECTARC M13/0	ER410	<0.10	0.55	<0.6	13	-	-	-	Base	Х	х	х	Х
SELECTARC F17/0	ER430	< 0.10	<1.00	<0.75	17	-	-	-	Base	Х	х	х	х
SELECTARC 11/3M	-	0.12	0.7	0.5	12	3	1.5	0.3	Base	Х	х	х	Х
SELECTARC M13/0C	ER420	0.3	0,55	<0.6	13	-	-	-	Base	Х	х	Х	х

ALLIAGES DE NICKEL

Dánausinakian	Classification			Anal	yse chim	ique type	e (%)			0,3	0,4	0,5	0,6
Dénomination	AWS A5.14	Ni	Cr	Fe	Ti	Nb	Мо	Со	Al	(mm)	(mm)	(mm)	(mm)
■ SELECTARC NI625	ERNiCrMo-3 / 5837	> 58	22	< 5	< 0.4	3.5	9	-	< 0.4	-	-	-	Х
■ SELECTARC NI718	ERNiFeCr-2 / 5832	52	19	Base	0.9	5	3	< 1	< 0.5	-	-	-	Х

ALLIAGES D'ALUMINIUM

Dénomination	Classification			Anal	yse chim	ique type	e (%)			0,3	0,4	0,5	0,6
Denomination	AWS A5.10	Mn	Fe	Si	Mg	Al	Zn	Cr	Ti	(mm)	(mm)	(mm)	(mm)
■ SELECTARC ALG5	ER5356	0.15	0.4	0.2	4.7	Base	< 0.1	0.15	0.15	Х	х	х	Х
■ SELECTARC ALS5	ER4043	-	0.4	5.2	-	Base	< 0.1	-	-	Х	х	х	х
■ SELECTARC ALS7	R-357.0	-	0.1	7	0.55	Base	-	-	0.1	-	-	-	х
■ SELECTARC ALS12	ER4047	0.1	0.5	12	-	Base	<0.1	-	-	-	-	-	х

ALLIAGES CUIVREUX

Dánamination	Classification	Analyse chim	ique type (%)	0,3	0,4	0,5	0,6
Dénomination	ISO 24373	Cu	Ag	(mm)	(mm)	(mm)	(mm)
SELECTARC CUAG	CuAg1	98.5	1	Х	Х	-	-

ALLIAGES DE TITANE

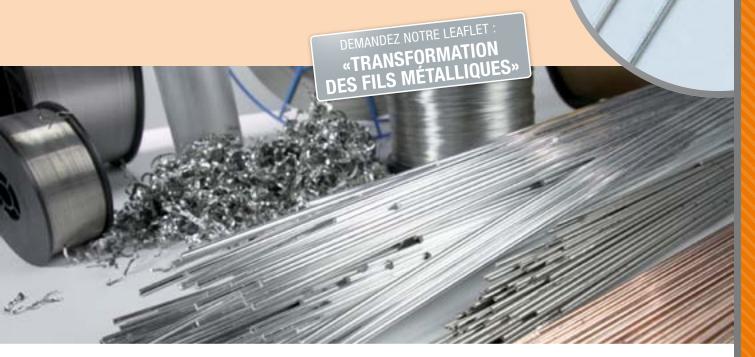
Dánomination	Classification		А	nalyse chim		0,3	0,4	0,5	0,6		
Dénomination	AWS A5.16 / AMS	С	N_2	H ₂	02	Fe	Ti	(mm)	(mm)	(mm)	(mm)
SELECTARC T40	ERTI-2 / 4951	< 0.05	< 0.02	< 0.008	< 0.10	< 0.20	Base	-	-	-	Х

ALLIAGES DE COBALT

Dénomination Classificat				Analyse	chimique	type (%)			0,3	0,4	0,5	0,6
Denomination	AMS	Fe	Cr	Ni	W	Co	Si	Mn	(mm)	(mm)	(mm)	(mm)
SELECTARC FICO25	5796	< 3	20	10	15	Base	1	1.5	-	-	-	Х

RECHARGEMENT DUR POUR OUTILLAGE

Dénomination	Dureté					A	nalys	se ch	imiqu	ie typ	e (%)				0,3	0,4	0,5	0,6
Denomination	(HRC)	С	Si	Mn	Cr	Ni	Мо	Al	Со	Ti	٧	W	Р	S	Fe	(mm)	(mm)	(mm)	(mm)
SELECTARC 819 BS	~48	0.35	0.3	0.4	1.7	3.8	0.3	-	-	-	-	-	<0.015	<0.010	Base	Х	Х	Х	Х
■ SELECTARC BMS	~36	0.06	0.7	1.1	2.7	-	1.0	-	-	-	-	-	<0.015	<0.015	Base	Х	Х	Х	Х
■ SELECTARC MV5S	60	0.5	-	-	5.0	-	1.3	-	-	-	0.4	1.3	-	-	Base	Х	Х	Х	Х
SELECTARC MARVAL 18S	~35/~50	<0.01	<0.1	<0.1	-	18.0	5.0	0.1	8.5	0.5	-	-	-	-	Base	Х	Х	Х	Х
■ SELECTARC SMV3S	~58	0.38	0.9	0.3	5.0	-	1.3	-	-	-	0.5	-	-	-	Base	Х	Х	Х	Х
■ SELECTARC HBF17	~53	0.4	0.5	0.4	16.5	-	1.1	-	-	-	-	-	-	-	Base	-	х	х	х



Tous types de nuances peuvent être étudiés sur demande, consultez-nous!

LES + DE LA GAMME : réalisation de travaux sur demande (tréfiler, dresser, bobiner, former, décaper, identifier...) toutes sortes de fils, c'est une des spécialités de FSH WELDING GROUP!

TRÉFILAGE

À partir du Ø 9 mm jusqu'au 0,2 mm pour les alliages aluminium, et du Ø 4 mm jusqu'au 0,2 mm pour les aciers au carbone, aciers inoxydables, base nickel, cuivreux, aluminium, base cobalt.

Dressage et coupage de tous types d'alliages sur longueurs spécifiques du Ø 6 à Ø 0,3 mm:

- aluminium,
- cuivreux,
- cobalt,
- titane,
- et autres métaux.

BOBINAGE

Pour répondre aux spécifications de ses clients, FSH Welding Group bobine tous types de fils métalliques en différents diamètres, sous plusieurs types de supports et de poids variés:

Bobines plastique et métallique : D300, D200, D100, bobines spéciales K400, K500, SD400...

Poids de 0,5 kg à 40 kg selon nuances.

DÉCAPAGE

La pureté des alliages est une condition indispensable dans certains milieux industriels, comme le nucléaire et l'aéronautique.

Pour répondre à ce besoin 2 méthodes de décapage assurent un produit « super clean », 100 % sans oxydes :

- · décapage chimique,
- · décapage mécanique.

IDENTIFICATIONS PERSONNALISÉES

Réduire le risque de mélange des produits utilisés en production, besoin de rapidité dans le repérage des alliages ou des diamètres, personnaliser l'étiquette ou l'emballage...

FP Soudage vous offre la possibilité de distinguer vos alliages selon vos propres préférences. À vous de choisir parmi toutes les options proposées ci-après, celles qui répondent le mieux à votre attente!

• Frappe, Peinture ou Drapeautage.

CONDITIONNEMENTS / PACKAGING

MIG-MAG / BOBINES

PACKAGING BOBINE EN PLASTIQUE D100 Dimensions: ø externe 100 mm Poids bobine: Aluminium: 0.5 kg Autres: 1 kg Micro-laser: 50 m Diamètres disponibles: 0.80 mm 1.00 mm 1.20 mm Micro-laser

TIG / ÉTUI (1000 mm)

PACKAGING TIG ÉTUI	
ÉTUI	POIDS
Aluminium	2.5 kg ou 5 kg
Acier/Cuivre/Nickel	5 kg
Nuances drapeautées	1 kg ou 2.5 kg (selon diamètre)

PACKAGING TIG ÉTUI CRISTA	L
ÉTUI	LONGUEUR
Fils micro-laser	50 m (baguettes de 1 m)

SERVICES & QUALITÉ

SERVICES

Conseil et assistance

Une équipe d'ingénieurs et métallurgistes expérimentés aident les clients dans le choix de matériaux les mieux adaptés à chaque application.

• Recherche et Développement (R&D)

Le service R&D assure la réalisation des tests produits (essais mécaniques et non destructifs) conformément aux demandes des clients.

Service client

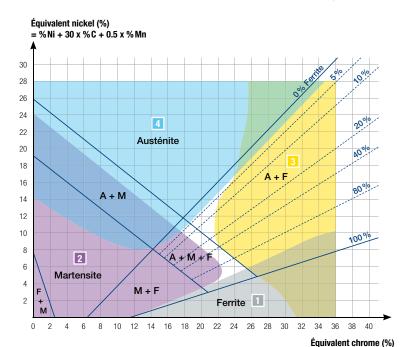
Le service commercial est disponible pour répondre rapidement à toutes demandes.

• Demandes spécifiques

RCCM, certificats 3.1 mécanique, ...

QUALITÉ

Certification ISO 9001 et engagé dans une démarche EN 9100.



DONNÉES TECHNIQUES

DIAGRAMME DE SCHAEFFLER

LE DIAGRAMME DE SCHAEFFLER PERMET DE CALCULER APPROXIMATIVEMENT LA STRUCTURE CRISTALLINE D'UNE SOUDURE EN ACIER HAUTEMENT ALLIÉ, APRÈS REFROIDISSEMENT À L'AIR AMBIANT.

Il faut obligatoirement sa composition chimique afin de calculer :

L'ÉQUIVALENT CHROME =

% Cr + % Mo + 1.5 x % Si + 0.5 x % Nb

L'ÉQUIVALENT NICKEL =

% Ni + 30 x % C + 0.5 x % Mn

1 DOMAINE 1

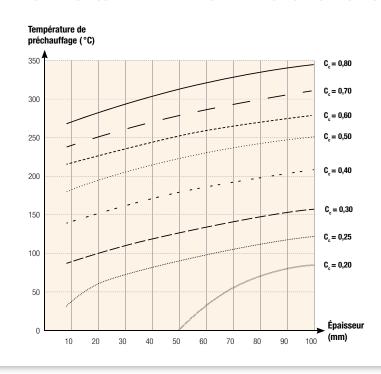
Risque de grossissement des grains au-dessus de 1150 °C.

2 DOMAINE 2

Risque de fragilisation : fissuration à froid. Tapures de trempe en-dessous de 400°C.

3 DOMAINE 3

Risque de formation de phase sigma entre 450°C et 900°C.


4 DOMAINE 4

Risque de fissuration à chaud au-dessus de 1250°C.

CARBONE ÉQUIVALENT & TEMPÉRATURE DE PRÉCHAUFFAGE

= % Cr + % Mo + 1,5 x % Si + 0,5 x % Nb

MÉHODE DE CALCUL DE LA TEMPÉRATURE DE PRÉCHAUFFAGE D'UN ACIER EN FONCTION DE SA COMPOSITION CHIMIQUE.

FORMULE SELON IIS DOC. IX 646-69

$$C_c = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Cu + Ni}{15}$$

 $C_{e.c} = C_{e} + 0.0254 e$

(e : épaisseur de la pièce en cm)

TABLEAU DE CONVERSIONS

ALLIAGES	ALUM d : 2,7	INIUM g/cm³		ANE g/cm³	IN d : 7,85	OX 5 g/cm³		IVRE 9 g/cm³	
Ø	g/m	m/kg	g/m	m/kg	g/m	m/kg	g/m	m/kg	
0.6	0.76	1310	1.27	786	2.22	450	2.52	397	
0.8	1.36	735	2.26	442	3.94	254	4.47	224	
1.0	2.12	472	3.53	283	6.16	162	6.98	143	
1.2	3.05	328	5.08	197	8.87	113	10.06	100	
1.6	5.42	184	9.04	111	15.77	63	17.88	56	
2.0	8.48	118	14.13	71	24.65	41	27.95	36	
2.4	12.21	82	20.34	49	35.48	28	40.23	25	
3.0	19.07	52	31.79	31	55.46	18	62.88	16	
3.2	21.70	46	36.17	28	63.10	16	71.54	14	
4.0	33.91	29	56.52	18	98.59	10	111.78	9	
5.0	52.99	19	88.31	11	154.06	7	174.66	6	

d : densité, g/m : grammes par mètre, m/kg : mètres par kilo

1" = 1 pouce = 25,4 mm									
ø en mm	ø en fraction de pouce	ø en pouce							
0.6	1/44	0.0236							
0.8	1/32	0.0315							
1.0	1/26	0.0393							
1.2	3/64	0.0472							
1.6	1/16	0.0629							
2.0	5/64	0.0781							
2.4	3/32	0.0945							
3.2	1/8	0.1259							
4.0	5/32	0.1574							

DONNÉES TECHNIQUES

CORRESPONDANCE DES DURETÉS:

BRINELL - VICKERS - ROCKWELL - SHORE

D'APRÈS EURONORME 8.55 DE JUILLET 1955

Résistance à la traction	Dureté BRINELL HB	Dureté RC	OCKWELL	Dureté VICKERS HV	ROCKWELL	_ DIAMANT	Dureté
(kg/mm²)	(P = 30 D2)	HRB	HRC	(P = 30 kg)	Charge 30 kg (N)	Charge 15 kg (N)	SHORE
28	80	36,4		80			
30	85	42,4		85			
32	90	47,4		90			
33	95	52,0		95			
35	100	56,4		100			
37	105	60,0		105			
39	110	63,4		110			15
40	115	66,4		115			18
42	120	69,4		120			19
43	125	72,0		125			20
45	130	74,4		130			-
47	135	76,4		135			-
48	140	78,4		140			21
50	145	80,4		145			22
51	150	82,2		150			23
53	155	83,8		155			-
55	160	85,4		160			25
56	165	86,8		165			-
58	170	88,2		170			26
60	175	89,6		175			-
62	180	90,8		180			28
63	185	91,8		185			-
65	190	93,0		190			29
67	195	94,0		195			30
68	200	95,0		200			31
70	205	95,8		205			32
72	210	96,6		210			-
73	215	97,6		215			33
75	220	98,2		220			-
77	225	99,0		225			-
78	230		19,2	230	41,9	69,7	34
80	235		20,2	235	42,9	70,3	35
82	240		21,2		43,9	70,9	36
84	245		22,1				-
85	250		23,0		45,1	71,7	37
87	255		23,8		46,2	72,5	38
89	260		24,6	260	4	-a :	-
90	265		25,4	265	47,3	73,1	39
92	270		26,2	270	48,3	73,7	40
94	275		26,9	275	46.5		-
96	280		27,6	280	49,3	74,4	41
97	285		28,3	285	50.0	75.0	-
99	290		29,0	290	50,3	75,0	42
101	295		29,6	295	F4.0	75.5	40
103	300		30,3	300	51,2	75,5	43
106	310		31,5	310	52,2	76,1	45
110	320		32,7	320	53,3	76,7	46
	V	ALABLE SUR L	ES ACIERS NO	N ALLIÉS ET RECUI	TS		

ésistance à la traction	Dureté BRINELL HB	Dureté RO		Dureté VICKERS HV	ROCKWELI	Dureté SHORE	
(kg/mm²)	(P = 30 D2)	HRB	HRC	(P = 30 kg)	Charge 30 kg (N)	Charge 15 kg (N)	
113	330		33,8	330	54,3	77,3	47
117	340		34,9	340	55,4	78,0	48
120	350		36,0	350	56,4	78,6	50
123	359		37,0	360	57,6	79,3	51
126	368		38,0	370			
129	376		38,9	380	58,7	80,0	52
132	385		39,8	390	59,9	80,6	54
135	392		40,7	400			
138	400		41,5	410	61,1	81,4	56
141	408		42,4	420	62,3	82,0	58
144	415		43,2	430			
146	423		44,0	440	63,5	82,8	59
149	430		44,8	450			
153	439		45,5	460	64,6	83,4	61
159	444		46,3	470	65,8	84,0	63
160			47,0	480	66,0	84,1	-
165	461		47,7	490	67,2	84,7	65
167			48,3	500	67,4	84,9	-
171	477		49,0	510	68,2	85,3	66
174			49,7	520	68,7	85,6	-
178	495		50,3	530	69,4	85,9	68
182			50,9	540	69,9	86,3	-
185	514		51,5	550	70,3	86,5	70
192	534		52,1	560	71,6	87,2	71
200	555		52,8	570	72,7	87,8	73
208	578		53,3	580	73,9	88,4	75
217			53,8	590	75,1	89,0	77
227			54,4	600	76,3	89,6	79
228			54,9	610	76,4	89,7	-
231			55,4	620	76,8	89,8	80
			55,9	630			
			56,4	640			
			56,9	650			
			57,4	660			
			57,9	670	77,2	90,1	
			58,4	680	77,5	90,2	81
			58,9	690	77,6	90,3	-
			59,3	700	78,4	90,7	83
			60,2	720	79,0	91,0	84
			61,1	740	79,1	91,0	-
			61,9	760	79,7	91,2	86
			62,8	780	80,4	91,5	87
			63,5	800	81,1	91,8	88
			64,3	820	81,7	92,0	90
			65,0	840	82,2	92,1	91
			65,7	860	82,7	92,3	92
			66,3	880	83,1	92,5	93
			66,9	900	83,6	92,7	95
			67,5	920	84,0	92,7	96
			68,0	940	84,0	93,0	96
			00,0	970	84,8	93,4	97
				1000			
					85,3	93,6	
				1050	85,8	93,9	
				1100	86,4	94,1	
				1200	87,2	94,5	

VALABLE SUR LES ACIERS NON ALLIÉS ET RECUITS

Panofils201604FR

FSH Welding Group, 4 rue de la Fonderie, 25220 Roche-Lez-Beaupré

- tél.: +33 3 81 60 51 72 → fax: +33 3 81 57 02 75
- ➤ info@fsh-welding.com
 ➤ www.fsh-welding.com

SELECTARC WELDING

Grandvillars (90) **FRANCE**

- > tél.: +33 3 84 57 37 77
- ➤ info@fsh-welding.com
- > www.fsh-welding.com

SELECTARC BRAZING

Roche Lez Beaupré (25) **FRANCE**

- ➤ tél.: +33 3 81 60 51 70
- ➤ info@fsh-welding.com
- > www.fsh-welding.com

FSH WELDING INDIA

Mumbai INDIA

- > tél.: +91-22-25675061/62
- ➤ india@fsh-welding.com
- > www.fsh-welding.com

FSH WELDING GULF

Sharjah UNITED ARAB EMIRATES

- > tél.: +971 551789837
- > gulf@fsh-welding.com
- > www.fsh-welding.com

FSH WELDING ITALY

Grassobbio (BG) ITALY

- > tél.: +39 035 525 575
- ➤ info@fsh-welding.it
- > www.fsh-welding.com

FSH WELDING CANADA

Montreal CANADA

- ➤ tél.: +1 514-631-7670
- ➤ info@fsh-welding.ca
- > www.fsh-welding.ca

WESTBROOK WELDING ALLOYS

Warrington UNITED KINGDOM

- > tél.: +44 1925 839 983
- > sales@westbrookwelding.co.uk
- > www.westbrookwelding.co.uk

SOLDADURAS CENTRO S.A

Buenos Aires ARGENTINA

- > tél.: +54 11 4754-3500
- > ventas@soldacentro.com.ar
- www.soldadurascentro.com.ar